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Abstract

The solvability of the regulator equation for a general nonlinear system is discussed in this paper by using geometric method. The ‘feedback’
part of the regulator equation, that is, the feasible controllers for the regulator equation, is studied thoroughly. The concepts of minimal output
zeroing control invariant submanifold and left invertibility are introduced to find all the possible controllers for the regulator equation under
the condition of left invertibility. Useful results, such as a necessary condition for the output regulation problem and some properties of friend
sets of controlled invariant manifolds, are also obtained.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The output regulation problem for the following nonlinear
system

ẋ = F(x, w, u), ẇ = s(w), e = h(x, w), (1)

has drawn much attention (see Byrnes, Priscoli, Isidori, &
Kang, 1997; Chen & Huang, 2004, 2005a, 2005b; Cheng,
Tarn, & Spurgeon, 2001; Huang, 2001, 2003; Huang & Chen,
2004; Huang & Lin, 1995; Huang & Rugh, 1992a, 1992b;
Isidori, 1997; Knobloch, Isidori, & Flockerzi, 1993; Marconi
& Isidori, 2000; Marconi, Isidori, & Serrani, 2004;
Serrari & Isidori, 2000; Zheng, Zhang, & Evans, 2000) since
the publication of the celebrated paper (Isidori & Bynes,
1990) by geometric method, where x(t) ∈ Rn, w(t) ∈ Rq ,
u(t) ∈ Rm, e(t) ∈ Rp, F(0, 0, 0) = 0, s(0) = 0, h(0, 0) = 0.
Under some necessary hypotheses, Isidori and Bynes
(1990) and Isidori (1995) transfer the output regulation
problem into the solvability of the following regulator
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equation:

��

�w
s(w) = F(�(w), w, u(w)), 0 = h(�(w), w). (2)

A solution to the above regulator equation consists of two parts,
a ‘state variable’ part that defines a controlled invariant mani-
fold, and a ‘feedback’ part that makes the manifold invariant.
The state variable part can be stated as the algebraic equations
that �(w) must satisfy, while the feedback part is the set of all
the feasible controllers u(w)’s which ensure the solvability of
the regulator equation. The main attention in literature focuses
on the state variable part in order to reduce the number of un-
known states in (2), while the feedback part of (2) has not been
well studied.

For the affine case F = f (x) + g(x)u + p(x)w, Isidori and
Bynes (1990) gives a geometric characterization on the solv-
ability of (2). Later, general cases are considered in Huang and
Rugh (1992a), Cheng et al. (2001), Huang (2003), and Huang
and Lin (1995) by analytic method. Some of the results require
the existence of relative degrees. The present paper generalizes
the geometric ideas in Isidori and Bynes (1990) to general
nonlinear systems, discusses the feedback part of (2), and thus
offers some new insight from differential geometric view point.
By computing the defining equations of the maximal output
zeroing submanifold, (2) is reduced into a center manifold
equation with less number of unknowns (both state variables

http://www.elsevier.com/locate/automatica
mailto:xxia@postino.up.ac.za
mailto:jfzhang@tuks.co.za


446 X. Xia, J. Zhang / Automatica 44 (2008) 445–450

and inputs). During the reduction, all the feasible controllers
are found by some parametrization, and the process does not
require the existence of relative degrees. Furthermore, an easily
checkable necessary condition for the solvability of the output
regulation problem is obtained in Proposition 1 too. After the
work on the state variable part of (2), the second part of the
paper discusses the feedback part of (2) by introducing a new
concept of left invertibility. When a nonlinear system (1) is left
invertible, all the feasible controllers are shown to be contained
in the friend set of a minimal output zeroing control submani-
fold under some nonzero intersection condition.

The paper is organized as follows. Section 2 gives an algo-
rithm to compute the maximal output zeroing submanifold for
a general nonlinear system. Section 3 uses the algorithm to re-
duce the number of unknowns in the regulator equation (2).
Section 4 discusses the parametrization of feasible controllers
for the regulator equation by left invertibility. The last section
is the conclusion.

For any set X, let Xc denote its connected component which
contains the origin. All the functions in the paper are supposed
to be smooth. The terminology feasible controllers of a solution
manifold N of (2) refers to the friend set of N. The rank of a
matrix, whose elements are functions, on an open set is defined
to be the constant which equals the rank of the matrix at any
point in the open set.

2. Computation of output zeroing submanifold

Suppose f (0, 0) = 0 and h(0) = 0 in the following system

ẋ = f (x, u), y = h(x). (3)

Definition 1. A connected submanifold M = {x : �(x) = 0},
which contains also the origin, is called controlled invariant on
an open neighborhood U of 0 with respect to the system (3) if

there exists a smooth function �(x) such that ��
�x

f (x, �(x))=0,
or f (x, �(x)) ∈ TxM , for all x ∈ M ∩U . A controlled invariant
submanifold, which is contained also in {x : h(x)=0}, is called
(locally) maximal if it is maximal with respect to the relation
of inclusion. In this case, it is also called a (locally) maximal
output zeroing submanifold. The corresponding �(x) is called
a friend of M on the set U, and the set of all friends of M on U
is denoted by F(M ∩ U).

By Isidori (1995), the following algorithm computes the
maximal output zeroing submanifold for (3).

Algorithm 1. Input: M0 = {x : h(x) = 0}, k = 1.
Output: k∗ such that Mc

k∗ = Mc
k∗+1.

(1) Let Mk be the set {x ∈ Mc
k−1 : there exists a smooth u(x)

such that f (x, u) ∈ TxM
c
k−1}.

(2) If Mc
k = Mc

k−1 then let k∗ = k − 1 and stop; otherwise
repeat the above Step (1) for k := k + 1.

Remark 1. The function u = u(x) for Mk may be different
from that of Mk−1, and it is reasonable to denote the u for Mk

by uk . Lemma 1 shows that once uk is known, the function u
for Mi, i�k − 1, can be chosen as uk .

Lemma 1. Let uk(x) be the function u(x) defined in the defi-
nition of Mk in Algorithm 1, then f (x0, uk(x0)) ∈ Tx0Mi, i =
0, . . . , k, where x0 is any point in some open subset of Mc

k

which contains the origin.

Proof. It is obvious that x0 ∈ Mc
k ⊆ Mc

k−1 ⊆ · · · ⊆ Mc
0 . By

Mc
i+1 ⊆ Mc

i , 0� i�k − 1, one has T Mc
i+1 ⊆ T Mc

i locally.
It is always possible to find a small enough open set U of Mc

k

which contains the origin, and at the same time, for any x0 ∈ U

there is f (x0, uk(x0)) ∈ T Mc
k ⊆ T Mc

k−1 ⊆ · · · ⊆ T Mc
0. �

Remark 2. Let Uk be the set of u which satisfies the condition
of Mk in Algorithm 1, then Lemma 1 tells that Uk ⊆ Uk−1 ⊆
· · · ⊆ U0 holds in some neighborhood of the origin. This im-
plies that, if Uk is the set of functions which satisfy some sys-
tem of algebraic equations, then all the function of Uk+1 must
satisfy the same system of equations and, possibly, some other
equations.

Now consider the details of Algorithm 1. Let M0 = {x :
H0(x) := h(x)=0}, then M1={x ∈ Mc

0 , there exists a function

u=u(x) such that �H0
�x

f (x, u)=0}. Let F1(x, u)= �H0
�x

f (x, u)

and suppose rank�F1
�u

is a constant r1 on the intersection of a
small neighborhood of the origin and M1. Rearranging the com-
ponents of F1 and u, one can assume F1=((F 1

1 )T, (F 2
1 )T)T, u=

(uT
1 , uT

2 )T, and r1= rank
�F 1

1
�u1

. There exists a smooth matrix func-
tion P(x, u) on a possibly smaller open neighborhood of the

origin such that
�F 2

1
�u1

= P
�F 1

1
�u1

and
�F 2

1
�u2

= P
�F 1

1
�u2

. By the Im-
plicit Function Theorem, there exists a function � such that
u1 = �(u2, x) ensures F 1

1 (x, �(u2, x), u2) ≡ 0 for all (x, u2)

in some neighborhood U ′ of 0, where F 1
1 (x, u1, u2) is just the

function F 1
1 (x, u). Thus F1(x, u) = 0 is solvable with respect

to the unknown u if and only if there exists a function u2(x)

which solves the equation F 2
1 (x, �(u2, x), u2) = 0.

Lemma 2. Fix the notations above, and let F 4
1 (x, u2) =

F 2
1 (x, �(u2, x), u2), then

�F 4
1

�u2
≡ 0 for all (x, u2) ∈ U ′.

Proof. Let F 3
1 (x, u2) = F 1

1 (x, �(u2, x), u2), then F 3
1 ≡ 0 for

all (x, u2) ∈ U ′. By the existence of the matrix P mentioned

above one has
�F 4

1
�u2

(x, u2)= �F 2
1

�u1

��
�u2

+ �F 2
1

�u2
=P

�F 1
1

�u1

��
�u2

+P
�F 1

1
�u2

=
P

�F 3
1

�u2
≡ 0. �

Lemma 2 shows that F 4
1 (x, u2) does not contain u2, and

hence it can be written as F 4
1 (x) (see Example 1). Therefore

there exists a function u such that F1(x, u)=0 is solvable for x ∈
Mc

0 if and only if F 4
1 (x) := F2(x, �(u2, x), u2) = 0 is solvable

on Mc
0 . Then M1 ={x ∈ Mc

0 : F 4
1 (x)=0}c. By letting H1(x)=

((H0(x))T, (F 4
1 (x))T)T, one has also M1 = {x : H1(x) = 0}c.

Let �1(u2, x)=�(u2, x), �1=u2, �1=u1, then �1=�1(u2, x)=
�1(�1, x). To compute M2 it suffices to solve the equation
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�H1(x)

�x
f (x, u) = 0. By Lemma 1 and Remark 2, the function u

which ensures this equation must satisfy also �1 = �1(�1, x).
Let v = �1, f̃ (x, v) = f (x, u)|�1=�1(v,x) = f (x, �1(v, x), v),

F2(x, v) = �H1(x)

�x
f̃ (x, v), r2 = rank �F2

�v
, and rearrange the

components of F2 and v, one has F2 = ((F 1
2 )T, (F 2

2 )T)T, v =
(vT

1 , vT
2 )T, r2 = rank

�F 1
2

�v1
. A similar computation gives some

F 4
2 (x), H2 = (HT

1 , (F 4
2 )T)T, and M2 = {x : H2(x) = 0}c. Thus

the following algorithm is obtained.

Algorithm 1′. Input: M0={x : h(x)=0}c, �0 = (u1, . . . , um)T,
�0 = ∅, f̃0(x, �0) = f (x, u), H0(x) = h(x), k = 1. Output:
k∗, Hk∗ , �k∗ , �k∗ = �k∗(�k∗ , x).

(1) Let v = �k−1, Fk(x, v) = �Hk−1(x)

�x
f̃k−1(x, v), and

rank �Fk(x,v)

�v
be rk on a small open neighborhood

of 0.
(2) Rearrange the components of Fk and v and decompose

them into Fk = ((F 1
k )T, (F 2

k )T)T, v = (vT
1 , vT

2 )T, such that

rank
�F 1

k

�v1
= rk . Find, by the Implicit Function Theorem, the

function v1 =�(v2, x) such that F 1
k (x, v)|v1=�(v2,x) =F 1

k (x,
�(v2, x), v2) ≡ 0.

(3) Let F 4
k (x) = F 2

k (x, �(v2, x), v2). If rank ((
�Hk−1(x)

�x
)T,

(
�F 4

k (x)

�x
)T) = rank �Hk−1(x)

�x
, then output k∗ = k − 1, Hk∗ ,

�k∗ , �k∗ = �k∗(�k∗ , x) and stop the algorithm. Other-

wise let Hk(x) = (
(Hk−1(x))T, (F 4

k (x))T)T
, �k = v2;

for k = 1, let �k(�k, x) = �(v2, x); for k�2, let
�k(�k, x) = (�(v2, x)T, �k−1(�(v2, x), v2, x))T)T; and
let �k = �k(�k, x), f̃k(x, �k) := f̃k−1(x, v)|v1=�(v2,x),
Mk = {x : Hk(x) = 0}, k := k + 1, and go to
Step (1).

Remark 3. By the output of Algorithm 1′, one has �k∗ =
�k∗(�k∗ , x), where �k∗ consists of some components of
u. Therefore any friend u ∈ F(M∗), with a possible
reordering of its components, can be parameterized as
u = ((�k∗(�k∗ , x))T, (�k∗)T)T + �(x), where �(x) is any func-
tion which vanishes on M∗.

3. Solvability of regulator equations

Let xa =(xT, wT)T, Fa(xa, u)=(F (x, w, u)T, s(w)T)T, then
(1) is rewritten as ẋa = Fa(xa, u) and e = h(xa). Now apply
Algorithm 1′, one obtains the maximal output zeroing subman-
ifold M∗ in some neighborhood U of the origin. For simplicity,
the neighborhood U is omitted. The manifold M∗ can be written
as the solution set of its defining equations: M∗ = Mk∗ = {xa :
H ∗(xa) := Hk∗(xa) = 0}c. Note that Algorithm 1′ outputs the
free input variable �k∗ and the function �k∗ = �k∗(�k∗ , x). Let
rank �H ∗

�xa
be r locally, then by rearranging the components of

xa , one can suppose that xa = (xa1, xa2), xa1 is r-dimensional,
H ∗(xa1, xa2) = H ∗(xa), and there exists a function � such that
H ∗(�(xa2), xa2) ≡ 0.

Proposition 1. Suppose M∗ is the maximal output zero-
ing submanifold for the system (1), and M∗ is defined, in a
small neighborhood U of the origin, as M∗ = {(x, w) ∈ U :
�1(x, w) = 0, . . . ,��(x, w) = 0}. Then the regulator equa-
tion (2), and hence the output regulation problem, is solvable
only if T ∗M∗∩ spanK{dw} = 0 when x is viewed as indepen-
dent of w, where spanK{dw} = spanK{dw1, dw2, . . . , dwq},
T ∗M∗ = spanK{d�1, d�2, . . . , d��}, and K is the set of all
the smooth functions in the variable (x, w) on M∗.

Proof. Suppose the regulator equation (2) is solvable, then the
solution �(w) determines the set N = {(x, w) : x − �(w) = 0}
which is a controlled invariant submanifold of (1) contained
in {(x, w) : h(x, w) = 0}. Thus N ⊆ M∗ holds locally, and it
follows that T ∗M∗ ⊆ T ∗N .

It is easy to verify that T ∗N = spanK{dx − ��(w)

�w
dw} =

spanK{dx1 − ��1(w)

�w
dw, . . . , dxn − ��n(w)

�w
dw}, and T ∗N ∩

spanK{dw} = 0, therefore T ∗M∗ ∩ spanK{dw} = 0.
Since the solvability of the regulator equation (2) is neces-

sary for the solvability of the output regulation problem, the
condition T ∗M∗ ∩ spanK{dw} = 0 is also necessary to solve
the output regulation problem. �

Let W := spanR{	1, . . . , 	k} and V be linear subspaces of Rn,
dim W =k, and W ∩V =0, then dim span{	1+
, 	2, . . . , 	k}=k

for any 
 ∈ V . Thus, by applying Proposition 1 and some
easy linear algebra, one has rank �H ∗

�x
= rank �H ∗

�xa
= r .

Therefore one can choose the vector xa1 so that neither of
{w1, w2, . . . , wq} is included. Thus w1, . . . , wq are contained
in xa2, and (xa1, xa2) can be written as (x1, x2, w), where
x1 := xa1 , (x

T
2 , wT)T := xa2. Now � can be partitioned into

(�1, �2) in the same way as x, and u(w) can be partitioned
as u(w) = (vT, (�k∗(v, �, w))T)T, where v = �k∗ . Partition
F into F = (F T

1 , F T
2 ) so that the first equation in the system

(1) is written as ẋ1 = F1(x1, x2, w, u) and ẋ2 = F2(x1, x2, w,
u). Since �1 = �(�2, w) and u = (vT, (�(v, �2, w))T)T, where
�(v, �2, w) = �k∗(v, �, w)|�1=�(�2,w), the differential equation
in (2) can be written as

��2

�w
s(w) = F̃ (�2(w), w, v(w))), (4)

where F̃ (�2(w), w, v(w))) := F2(�(�2, w), �2, w, v(w),
�(v(w), �2(w), w)). Now the following theorem is obtained
by the above analysis.

Theorem 1. There exists an open neighborhood U of the origin
such that the following statements are equivalent:

(1) there exists a smooth function u = u(w) such that the
regulator equation (2) is solvable on U;

(2) there exists a smooth function v=v(w) such that the center
manifold equation (4) is solvable on U.

4. Feasible controllers of the regulator equation

Proposition 2. Let N1 = {x : �1(x) = 0}, N2 = {x :
�2(x) = 0} be two controlled invariant submanifolds of (3)
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on an open neighborhood U0 of 0, where �1, �2 satisfy
�1(x)|x=0 = 0, �2(x)|x=0 = 0. Then

(i) N1 ∩ U0 ⊇ N2 ∩ U0 holds if and only if ��1
�x

f (x, u) = 0
for all u ∈ F(N1 ∩ U0) and x ∈ N2 ∩ U0;

(ii) F(N1 ∩ U0) ⊆ F(N2 ∩ U0) holds if and only if
��2
�x

f (x, u)=0 for all u ∈ F(N1 ∩U0) and x ∈ N2 ∩U0.

Proof. (i) For any u ∈ F(N1∩U0), one has ��1
�x

f (x, u)|N1∩U0=
0. Then ��1

�x
f (x, u)|N2∩U0 = 0 by N1 ∩ U0 ⊇ N2 ∩ U0, and

the necessity holds. As for the sufficiency, it suffices to prove

�1(x) = 0 for all x ∈ N2 ∩ U0. Note that �̇1 = ��1
�x

f (x, u) = 0
for x ∈ N2 ∩ U0 and u ∈ F(N1 ∩ U0). Now fix the conditions
x ∈ N2 ∩ U0 and u ∈ F(N1 ∩ U0). Let � be any connected
component of N2 ∩ U0, and x(t0) any point in � for some
t0, then �1(x(t0)) = 0. This initial condition of the function
�1(x(t)) at t = t0 and the equation �̇1(x(t)) = 0 determine a
zero solution �1(x(t)) ≡ 0 on � and hence on N2 ∩ U0. Thus
N1 ∩ U0 ⊇ N2 ∩ U0.

(ii) By the condition F(N1 ∩ U0) ⊆ F(N2 ∩ U0),
��2
�x

f (x, u)|N2∩U0 =0 for all u ∈ F(N1∩U0), thus the necessity
follows. Now prove the sufficiency. For any u ∈ F(N1 ∩ U0),

one has ��2
�x

f (x, u)|N2∩U0 = 0, therefore u ∈ F(N2 ∩ U0) and
F(N1 ∩ U0) ⊆ F(N2 ∩ U0) holds. �

The following result is obvious (cf. Xia, 1993).

Proposition 3. Under the same conditions of Proposition 2,
and suppose, furthermore, x = ((x1)T, (x2)T)T, x2 = ((x3)T,
(x4)T)T, �1=x1−�(x2), �2=((�1)

T, (�(x2))T)T, �(x2)=x3−
�(x4), F(N1 ∩ U0) ⊇ F(N2 ∩ U0), W1(x) := ��1

�x
f (x, u(x)),

W̃1(x
2) := W1(x)|x1=�(x2), and �W̃1

�x3 /≡ 0 for some u0(x) ∈
F(N2 ∩ U0), then N1 ∩ U0 = N2 ∩ U0.

Now consider the parametrization of the feasible controllers
of the regulator equation (2). For simplicity, fix the notation
N to be {xa := (xT, wT)T ∈ U1: there exists a function u(x)

such that x = �(w) solves the Eq. (2)}. It is obvious that N is
controlled invariant, and one needs only to parameterize F(N).

Let �(xa) = x − �(w), then ��
�xa

(
(F (x, w, u))T, (s(w))T)T = 0

holds on the set {xa ∈ U1 : � = x − �(w) = 0, h(x, w) = 0}.

Definition 2. A submanifold C∗ is called a minimal output
zeroing control invariant submanifold for (3) on U0 if it contains
but not equals 0, and is defined by {x ∈ U0 : ∗(x)= 0}, with
∗(x)=(1, 2, . . . ,�)

T, such that C∗ is controlled invariant
on U0 and the equality rank ((

�∗
�x

)T, (
��
�x

)T)T=rank �∗
�x

holds
on {x ∈ U0 : ∗(x) = 0} for any function �(x) satisfying
�(x)|x=0 =0, � := {x ∈ U0 : ∗(x)=0, �(x)=0} is nonzero,

and �̇(x(t)) = ��
�x

f (x, u) = 0 on � for all u ∈ F(C∗ ∩ U0).

Proposition 4. A manifold C∗ is minimal output zeroing con-
trol invariant for the system (3) on an open neighborhood U0

of 0 if and only if it is a minimal submanifold in the set T :=
{C : 0 ∈ C, C 
= 0, C ⊆ M∗, C is controlled invariant on
U0,F(C ∩ U0) ⊇ F(M∗ ∩ U0)}, where M∗ is the maximal
output zeroing submanifold of (3) on U0 and M∗ contains the
origin.

Proof. Let C∗ = {x : ∗(x) = 0} be a minimal output zeroing
control manifold for (3) on U0, now show that it is minimal in
T. It follows from Definition 2 that C∗ is nonzero, contained
in M∗, controlled invariant, and F(C∗ ∩ U0) ⊇ F(M∗ ∩ U0),
therefore C∗ ∈ T. If C∗ is not minimal in T, then there
exists a manifold W ∈ T such that W ⊂ C∗, W 
= C∗, and
W is defined by {x : ∗(x) = 0, �(x) = 0}. The function �
must satisfy �̇ = 0 when restricted on W since W is controlled
invariant. By the definition of C∗, the function � must be
algebraically dependent on ∗ which results in that the set
{x ∈ U0 : ∗(x) = 0, �(x) = 0} equals the set {x ∈ U0 :
∗(x)=0}. This contradicts the hypothesis W 
= C∗, therefore
C∗ is minimal in T.

Let C̃ = {x ∈ U0 : �(x) = 0} be a minimal manifold in T.
For any �(x) which satisfies �(x)|x=0 = 0, � := {x ∈ U0 :
�(x) = 0, �(x) = 0} 
= 0, and �̇(x(t)) = ��

�x
f (x, u) = 0 when

u ∈ F(C̃ ∩U0) and x ∈ �, one has F(�∩U0) ⊇ F(C̃ ∩U0)

by Proposition 2. Then it follows from the minimality of C̃

that � = C̃. Therefore the function �(x) must be algebraically
dependent on �(x) on �. Now C̃ satisfies Definition 2, this
ends the proof. �

Algorithm 2. Input the maximal output zeroing manifold M∗=
{x ∈ U0 : H ∗(x)=0} for the system (3) on U0, where H ∗(0)=0,
and output k∗ and Ck∗ .

1. Let C0 = M∗, S0 = H ∗, k = 1.
2. Find if there is any function �(x) such that �(x)|x=0 =

0, � := U0 ∩ Ck−1 ∩ {x : �(x) = 0} is nonzero, and

�̇(x(t)) = ��
�x

f (x, u) = 0 for all u ∈ F(Ck−1 ∩ U0) when
x is restricted on �. If such a �(x) exists, then let Sk(x) =
(Sk−1(x)T, �(x))T, and Ck = {x ∈ U0 : Sk(x) = 0}.

If rank �Sk(x)

�x
= rank �Sk−1(x)

�x
holds on Ck−1 ∩ U0 or the

above-mentioned �(x) does not exist, then stop the algorithm
and output k∗ = k − 1 and Ck∗ . Otherwise let k := k + 1 and
repeat Step 2.

Proposition 5. In the output of the above Algorithm 2, Ck∗ is
minimal output zeroing control invariant.

Proof. Obviously Ck∗ is nonzero and contained in M∗. It is also
invariant with respect to f (x, u∗(x)) for any u∗ ∈ F(Ck∗∩U0).
For any function �(x) such that �(x)|x=0 = 0, � := {x ∈ U0 :
Sk∗(x) = 0, �(x) = 0} is nonzero, �̇(x(t)) = ��

�x
f (x, u) = 0 on

� for all u ∈ F(Ck∗ ∩ U0), by Step 2 of Algorithm 2 for step

k=k∗+1, such a � satisfies rank ((
�Sk∗
�x

)T, (
��
�x

)T)T=rank �Sk∗
�x

on {x ∈ U0 : Sk∗(x)= 0}. Thus Ck∗ is minimal output zeroing
control invariant. �
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Definition 3. The system (3) is called left invertible on an open
neighborhood U0 of the origin if its maximal output zeroing
submanifold M∗ is defined by M∗ = {x : H ∗(x) = 0} on U0
with H ∗(0) = 0, and it satisfies the following Left Invertibility
Condition: the matrix �H ∗

�x

�f (x,u)

�u
is of full column rank, or

equivalently left invertible, when x is restricted to M∗ ∩U0 and
u is treated as a free variable.

Lemma 3. Suppose (3) is left invertible on an open neighbor-
hood U0 of 0, and M ={x : H(x)=0} is a controlled invariant
submanifold on U0 with H(0) = 0, then

(i) the matrix �H

�x

�f (x,u)

�u
is of full column rank on M ∩ U0

when u is treated as a free variable;
(ii) for any u0 ∈ F(M ∩ U0), F(M ∩ U0) equals the set

S := {u=u0 +�(x) : �(x) is any function which vanishes
on M ∩ U0}.

Proof. (i) Let M∗ = {x : H ∗(x) = 0} be the maximal output
zeroing manifold on U0 with H ∗(0)=0, then M ⊆ M∗ since M
is controlled invariant. One can suppose that all the components
of H ∗ appear in H. Then it follows from the left invertibility
of �H ∗

�x

�f (x,u)

�u
on M∗ that �H

�x

�f (x,u)

�u
is also left invertible on

M∗ and hence on M, this proves (i).
(ii) For any u0 ∈ F(M∩U0), one has �H

�x
f (x, u0)|M∩U0 =0.

Since the restriction of any u = u0 + � ∈ S to M ∩ U0 still
equals u0, there are �H

�x
f (x, u)|M∩U0 = 0, and u = u0 + � ∈

F(M ∩ U0),S ⊆ F(M ∩ U0).
On the other hand, for any element u1 ∈ F(M ∩ U0), it

suffices to show u1 − u0 vanishes on M ∩ U0 in order to prove
F(M ∩U0) ⊆ S. By the condition of left invertibility and the
Inverse Function Theorem, u can be solved uniquely from the
equation �H

�x
f (x, u)|M∩U0 =0, and one has u=�(x). Therefore,

when restricted on M ∩ U0, both u0(x) and u1(x) have the
same form �(x), and thus there exists a function �(x), which
vanishes on M ∩ U0, such that u1(x) = u0(x) + �(x). Hence
F(M ∩ U0) ⊆ S and (ii) follows. �

Theorem 2. Let M∗ be the maximal output zeroing manifold
M∗ of the system (1) on an open neighborhood U0 of the origin
with 0 ∈ M∗, N the solution manifold of (2) on U0, C∗ the
minimal output zeroing control manifold of (1) on U0, and
C∗ ⊆ N . Suppose (1) is left invertible on U0, then both defining
equations of N and C∗ satisfy the Left Invertibility Condition
in Definition 3, and therefore the equalities F(M∗) = S1,
F(N)=S2, and F(C∗)=S3 hold for any u0 ∈ F(M∗), and
F(C∗) ⊇ F(N) ⊇ F(M∗), where S1 := {u = u0 + �(x) :
�(x) is any smooth function which vanishes on M∗∩U0}, S2 :=
{u = u0 + 	(x) : 	(x) is any smooth function which vanishes
on N ∩ U0}, and S3 := {u = u0 + �(x) : �(x) is any smooth
function which vanishes on C∗ ∩ U0}.

Proof. Let the defining equations of M∗, N, and C∗ be H ∗, ,
and �, respectively. By Lemma 3,  satisfies the Left Invert-
ibility Condition, F(M∗) = S1 and F(N) = S2 hold. Note

that C∗ ⊆ N ⊆ M∗, one can suppose  consists of some rows
of �. Since the matrix �

�x

�f (x,u)

�u
is of full column rank on N,

the matrix ��
�x

�f (x,u)

�u
must be of full column rank on N and

hence on C∗. Again, by Lemma 3, � satisfies the Left Invert-
ibility Condition and F(C∗) = S3 holds. �

Remark 4. The solution manifold N may not be unique, thus
a minimal output zeroing control invariant C∗ may not be con-
tained in a solution manifold N. There may be the case that the
defining equations of C∗ with respect to the system (1) contain
a equation which has only the variable w and has no variable
x. This does not affect the results of Theorem 2 since the con-
clusions about F(C∗), F(N), F(M∗) and their relations still
hold. It would be convenient to compute the minimal output
zeroing control invariant manifold by noting that the function
�(x, w)=w always satisfies the equality ẇ=0 when restricted
on {(x, w) : w = 0} (see C of Example 1).

By the proof of Theorem 2, one needs only to find a con-
trolled invariant manifold contained in N in order to find F(N).
Therefore Algorithm 3 may be stopped at an intermediate step
as soon as one obtains a controlled invariant manifold contained
in N (see C′ of Example 1).

Proposition 6. Assume that (1) is left invertible on an open
set U0, 0 ∈ U0, and � = {� : N� is a solution manifold of (2)
on U0}. Suppose C∗ is a minimal output zeroing manifold of
(1) on U0, C∗ ∩ U0 ⊆ (

⋂
�∈� N�) ∩ U0, then F(C∗ ∩ U0) ⊇⋃

�∈� F(N� ∩ U0).

The above proposition follows easily by using Lemma 3. The
following example shows the computing steps for a general
non-affine system. It is non-affine, therefore the results in Isidori
and Bynes (1990) and Huang (2003) are not applicable. Again
the reduction algorithm in Huang and Lin (1995) cannot be
directly applied since the rank condition is not satisfied.

Example 1. Consider system (3) with n = 6, f = (f1, f2, . . . ,

f6)
T, f1 =w2

2 −w2
1 + 2w1w2 − 2x1, f2 = x3, f3 =−x3 + x6 +

2(x4 + 1)u2, f4 = x5 − (x3 + 1)u2
2, f5 = −x3 + x4 + w1 + u1,

f6 = x3 + w2, ẇ1 = w2, ẇ2 = −w1, ẇ3 = w2, e1 = h1(x) = x3,
e2 =h2(x)=x4, and e3 =h3(x)=w3 −w1 +x3 −2x4. Let x7 =
w1, x8=w2, x9=w3, H0=(h1, h2, h3)

T, xa=(x1, x2, x3, x4, x5,
x6, x7, x8, x9)

T, F(xa, u) = (f (xa, u)T, w2, −w1, w2)
T, F1 =

�h

�xa
F (xa, u)= (f3, f4, f3 −2f4)

T. Then rank �F1
�u

=1. Choose

F 1
1 = f3, F 2

1 = f4, v1 = u2, v2 = u1 by Algorithm 1′. From
F 1

1 = 0 one solves u2 = x3−x6
2(x4+1)

, substitute it into F 2
1 one has

F 4
1 = x5 − (x3+1)(x3−x6)

2

4(x4+1)2 . Since F 4
1 is not a function of u, this

convinces Lemma 2. Let h4 = F 4
1 |h1=h2=h3=0 =x5 − x2

6
4 and

H1=(h1, h2, h3, h4)
T. Note that rank �H0

�xa
< rank �H1

�xa
, one has

M1 ={x : H1(x)= 0}. It is easy to find that Algorithm 1′ stops
at k = 1 and M∗ = M1. The reduced regulator equation has a
solution �1 = w1w2, �2 = w2

1 + w2
2, �6 = w1. Therefore the

original regulator equation is solvable when u1= w1w2
2 −w1 and

u2 = −�6
2 = −w1

2 , and the solution is: �1 =w1w2, �2 =w2
1 +w2

2,
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�3 = �4 = 0, �5 = w2
1

4 , �6 = w1. Denote the corresponding
solution manifold by N. A simple calculation shows that the
original system is left invertible. By Algorithm 2, C = {xa :
x1=x2=x3=x4=0, x5− x2

6
4 =0, w1=w2=w3=0} is minimal and

contained in N, therefore F(C∩U0) ⊇ F(M∗∩U0). However,

by Remark 4, C′ = {xa : x1 = x2 = x3 = x4 = 0, x5 − x2
6
4 = 0} is

controlled invariant and C′∩U0 ⊆ N∩U0, thereforeF(C′∩U0)

⊇ F(M∗ ∩U0), and it is finer than F(C ∩U0) ⊇ F(M∗ ∩U0)

since C ⊆ C′ and F(C ∩ U0) ⊇ F(C′ ∩ U0).

5. Conclusion

In this paper a geometric characterization on the solvability
of regulator equation is presented. A generalized algorithm for
the computation of maximal output zeroing submanifold as well
as its application in the simplification of regulator equations
are obtained. The whole setup does not rely on the existence
of relative degrees. A necessary condition for the solvability
of output regulation problem is also obtained as a byproduct.
By introducing the concepts of minimal output zeroing control
invariant manifold and left invertibility, the parametrization of
the friend set of the solution manifold of regulator equation is
discussed too. For a future study, the challenging problem to
find finer characterization of the set of feasible controllers is
left to interested readers.

Acknowledgments

We are grateful to the helpful comments of the referees.

References

Byrnes, C. I., Priscoli, F. D., Isidori, A., & Kang, W. (1997). Structurally
stable output regulation of nonlinear systems. Automatica, 33, 369–385.

Chen, Z., & Huang, J. (2004). Dissipativity, stabilization, and regulation of
cascade-connected systems. IEEE Transactions on Automatic Control, 49,
635–650.

Chen, Z., & Huang, J. (2005a). A general formulation and solvability of the
global robust output regulation problem. IEEE Transactions on Automatic
Control, 50, 448–462.

Chen, Z., & Huang, J. (2005b). Robust output regulation with nonlinear
exosystems. Automatica, 41, 1447–1454.

Cheng, D., Tarn, T. J., & Spurgeon, S. K. (2001). On the design of
output regulators for nonlinear systems. Systems and Control Letters, 43,
167–179.

Huang, J. (2001). Remarks on robust output regulation problem for nonlinear
systems. IEEE Transactions on Automatic Control, 46, 2028–2031.

Huang, J. (2003). On the solvability of the regulator equations for a class of
nonlinear systems. IEEE Transactions on Automatic Control, 48, 880–885.

Huang, J., & Chen, Z. (2004). A general framework for tackling the
output regulation problem. IEEE Transactions on Automatic Control, 49,
2203–2218.

Huang, J., & Lin, C.-F. (1995). On the solvability of the general nonlinear
servomechanism problem. Control Theory and Advanced Technology. pt.
2, 10(4), 1253–1262.

Huang, J., & Rugh, W. J. (1992a). Stabilization on zero-error manifolds and
the nonlinear servomechanism problem. IEEE Transactions on Automatic
Control, 37, 1009–1013.

Huang, J., & Rugh, W. J. (1992b). An approximation method for the nonlinear
servomechanism problem. IEEE Transactions on Automatic Control, 37,
1395–1398.

Knobloch, H. W., Isidor, A., & Flockerzi, D. (1993). Topics in control theory.
Berlin: Birkhauser.

Isidori, A. (1995). Nonlinear control systems. (3rd ed.), New York: Springer.
Isidori, A. (1997). A remark on the problem of semiglobal nonlinear output

regulation. IEEE Transactions on Automatic Control, 42, 1734–1738.
Isidori, A., & Bynes, C. I. (1990). Output regulation of nonlinear systems.

IEEE Transactions on Automatic Control, 35, 131–140.
Marconi, L., & Isidori, A. (2000). Mixed internal model-based and

feedforward control for robust tracking in nonlinear systems. Automatica,
36, 993–1000.

Marconi, L., Isidori, A., & Serrani, A. (2004). Non-resonance conditions
for uniform observability in the problem of nonlinear output regulation.
Systems and Control Letters, 53, 281–298.

Serrari, A., & Isidori, A. (2000). Global robust output regulation for a class
of nonlinear systems. Systems and Control Letters, 39, 133–139.

Xia, X. (1993). Parameterization of decoupling control laws for affine
nonlinear systems. IEEE Transactions on Automatic Control, 38, 916–928.

Zheng, Y., Zhang, C., & Evans, R. J. (2000). A differential vector space
approach to nonlinear system regulation. IEEE Transactions on Automatic
Control, 45, 1997–2010.

Xiaohua Xia obtained his Ph.D. degree at Bei-
jing University of Aeronautics and Astronautics,
Beijing, China, in 1989. He stayed at the Uni-
versity of Stuttgart, Germany, as an Alexander
von Humboldt fellow in May 1994 and for two
years, followed by two short visits to Ecole Cen-
trale de Nantes, France and National University
of Singapore during 1996 and 1997, respec-
tively, both as a post-doctoral fellow. He joined
the University of Pretoria, South Africa, since
1998, and became a full professor in 2000. He
also held a number of visiting positions, as an

invited professor at IRCCYN, Nantes, France, in 2001, 2004 and 2005, as a
guest professor at Huazhong University of Science and Technology, China,
and as a Cheung Kong chair professor at Wuhan University, China. He is
a Senior IEEE member, served as the South African IEEE Section/Control
Chapter Chair. He also serves for IFAC as the vice-chair of the Technical
Committee of Non-linear Systems. He has been an Associate Editor of
Automatica, IEEE Transactions on Circuits and Systems II, and the Specialist
Editor (Control) of the SAIEE Africa Research Journal. His research interests
include: non-linear feedback control, observer design, time-delay systems,
hybrid systems, modelling and control of HIV/AIDS, and control and handling
of heavy-haul trains. He is supported as a leading scientist by the National
Research Foundation of South Africa, and elected a fellow of the South
African Academy of Engineering.

Jiangfeng Zhang obtained his B.Sc. and Ph.D.
in computational mathematics from Xi’an
Jiaotong University, China, in July 1995 and
December 1999, respectively. After being a
lecturer for more than two years in Shanghai
Jiaotong University in China, he had been a
post-doctoral researcher in the Chinese Univer-
sity of Hong Kong, Ecole Centrale de Nantes
in France, Nanyang Technological University in
Singapore, and University of Liverpool. He is
now a research fellow in the University of Pre-
toria, South Africa. His research interests are

energy management, nonlinear control theory, global optimization, computer
algebra, and algebraic geometry.


	Geometric characterization on the solvability of regulator equations62626262
	Introduction
	Computation of output zeroing submanifold
	Solvability of regulator equations
	Feasible controllers of the regulator equation
	Conclusion
	Acknowledgments
	References


