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Abstract

An approach of output regulation with measurement feedback is proposed for the control of heavy haul trains. The objective is to regulate
all cars’ speeds to a prescribed speed profile. The output regulation problem of nonlinear systems with measurement feedback is formulated
and solved for the first time in this paper. Its application to train control is detailed. Simulation result shows the feasibility of the approach, in
terms of its simplicity, cost effectiveness and its implementation convenience.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Trains play an important role in the transportation of mineral
resources such as in South Africa. In terms of the schedule and
the number of people involved, the cost is less for a larger load
per car or per train. This has resulted in long heavy haul trains
with multi-locomotives. The application of electronically con-
trolled pneumatic (ECP) braking systems in the 1990s makes
it possible to have very long trains stretching over 10 km. An
introduction of ECP is seen in Kull (2001). This braking sys-
tem was firstly rolled out on a large scale by Spoornet, a train
operator in South Africa, on its COALink line.

Energy consumption, running time (speed tracking) and in-
train force are of much concern to transportation corporations
(Zhuan & Xia, 2007). Various studies have tried to achieve
different objectives. Some studies have been done in Cheng
and Howlett (1992, 1993), Howlett, Milroy, and Pudney (1994),

� A preliminary version of this paper was presented at the 4th IFAC-
Symposium on Mechatronic Systems, Heidelberg, Germany, 11–16 Septem-
ber, 2006. This paper was recommended for publication in revised form by
Associate Editor Pedro Albertos under the direction of Editor Mituhiko Araki.

∗ Corresponding author. Tel.: +27 12 420 4341; fax: +27 12 362 5000.
E-mail addresses: zhuan.xiangtao@up.ac.za (X. Zhuan),

xxia@postino.up.ac.za (X. Xia).

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2007.05.002

Howlett (1996), Khmelnitsky (2000), Liu and Golovitcher
(2003) to schedule a train to travel from one station to the
next one in a given time with minimal energy consumption.
“To schedule” means to determine a driving sequence in terms
of locomotives’ power notches and wagons’ braking pressure
along a specific railway track. In those papers, a train is mod-
elled as a mass point, and the dynamics within a train are
ignored. Those approaches are essentially open loop control.

The other models a train as a cascade of mass points, for ex-
ample, in Yang and Sun (2001), Gruber and Bayoumi (1982),
where a speed profile is assumed first, and the aims are to drive
a train according to a speed profile with some objectives con-
sidered. For the study of high speed (passenger) trains in Yang
and Sun (2001), Astolfi and Menini (2002), speed tracking is
emphasized without considering in-train forces because in-train
forces are not so important for such short trains. An early study
for in-train forces can be seen in Gruber and Bayoumi (1982),
where a linear quadratic regulator (LQR) approach is employed
to optimize in-train forces and/or speed deviation from a refer-
ence speed with a largely simplified model. Recently, an LQR
approach is employed in Chou and Xia (2007) to optimize
in-train force, energy consumption and velocity tracking based
on a validated model in Chou, Xia, and Kayser (2007) with
the operation data from Spoornet. The methods in those papers
are all within a linear system theory. The off-line scheduling
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is based on some heuristic assumptions. In Rao (2005), based
on an infinite dimensional linear model, flatness based meth-
ods are used to design open loop control for a train. In Zhuan
and Xia (2006), an approach is applied to get an equilibrium
optimizing in-train force. The paper (Zhuan & Xia, 2007) inte-
grates the ideas of optimal scheduling in Zhuan and Xia (2006)
and LQR closed-loop control in Chou and Xia (2007). How-
ever, the closed-loop controller is designed based on full state
feedback, which is not practical since not all the states can be
measured.

An observer could be designed to supplement the LQR con-
troller if partial states are measured. This is, however, not the ap-
proach taken in this paper. Instead, output regulation is adopted
on the assumption that only speed measurement of locomotives
is available: while optimality is retained in open loop control,
closed-loop control is done by employing an output regulation
theory. This approach is practically feasible and is easily inte-
grable with human drivers who generally drive a train accord-
ing to the train’s speed. Instead of a linear system theory, a
nonlinear system theory is adopted such that without a linear
approximation philosophy, the control is closer to reality. An-
other advantage is the assumption that only locomotives’ speeds
are measurable.

Output regulation problem with state/error feedback in the
local version has been well studied. A seminal contribution
was made in Isidori and Byrnes (1990). Recent studies include
Huang and Chen (2004), Chen and Huang (2005) in which
general frameworks for global version have been proposed.
However, all those studies, by their nature, consider state/error
feedback. In practice, the states are usually not measurable, and
sometimes measured outputs differ from regulation error.

The output regulation problem of nonlinear systems with
measurement feedback is first formulated and solved in this
paper. Its application to train control is also detailed. To make
applicable the nonlinear regulator theory, the reference speed
trajectories are carefully redesigned according to the prescribed
speed profile. Simulation result shows the feasibility of such
a controller in terms of its simplicity, cost-effectiveness and
implementation convenience.

The structure of this paper is: the output regulation problem
of nonlinear systems with measurement feedback is formulated
and solved in Section 2. A train model is briefly described in
Section 3 while Section 4 discusses the application issues of
output regulation to train control. Simulation result is shown in
Section 5.

2. Measurement feedback output regulation

ẋ = f (x) + g(x)u + p(x)w,

e = h(x) + q(w),

ym = hm(x, w). (1)

Consider a nonlinear system (1), where the first equation defines
a plant with state x ∈ X ⊂ Rn and input u ∈ U ⊂ Rm, e ∈ Rp

is the output to be regulated, and ym ∈ Rpm is the measured
output. The variable w is the state of the exosystem defined by

ẇ = s(w). (2)

The mappings f (x), g(x), p(x), h(x), q(w), hm(x, w), s(w)

are assumed to be smooth satisfying f (0) = 0, h(0) + q(0) =
0, hm(0, 0) = 0, s(0) = 0 and the composite system of (1) and
(2) has an equilibrium at the origin col(x, w) = [xT, wT]T =
col(0, 0) with the input u = 0.

The class of controllers considered here is in the form of
measured output feedback

ż = �(z, ym), �(0, 0) = 0,

u = k(z, ym), k(0, 0) = 0. (3)

As a result, the closed-loop system can be written as (4), of
which the first two are denoted as ẋz = fc(xz, w).

ẋ = f (x) + g(x)k(z, ym) + p(x)w,

ż = �(z, ym),

ẇ = s(w),

e = h(x) + q(w), ym = hm(x, w). (4)

The output regulation problem is to find a controller of the
form (3) such that the closed-loop system (4) satisfies

P1. (�fc)/(�xz) is Hurwitz at the origin xz = 0.
P2. For all sufficiently small xz0, w0,

lim
t→∞ e(x(t), w(t)) = 0.

The exosystem is assumed to be neutrally stable, i.e., S =
�s(0)/�w has all its eigenvalues on the imaginary axis. One
also has the following notations.

A = �f (0)

�x
, Qm = �hm(0, 0)

�w
, Cm = �hm(0, 0)

�x
,

G = ��(0, 0)

�ym

, F = ��(0, 0)

�z
, H1 = �k(0, 0)

�ym

,

B = g(0), P = p(0), H = �k(0, 0)

�z
.

Theorem 1. For the nonlinear system (1), assuming the ex-
osystem is neutrally stable, (A, B) is controllable and the pair
of([

A P

0 S

]
, [Cm, Qm]

)

is detectable, the local dynamic measurement feedback output
regulation problem is solvable if and only if there exist smooth
mappings x =�(w), u=c(w) with �(0)=0, c(0)=0 satisfying

��(w)

�w
s(w) = f (�(w)) + g(�(w))c(w) + p(�(w))w,

0 = h(�(w)) + q(w). (5)

Proof. The necessity is as follows. The closed-loop system of
(4) has the form

ẋ = (A + BH 1Cm)x + BHz + (P + BH 1Qm)w

+ �(x, z, w),

ż = GCmx + Fz + GQmw + �(x, z, w),

ẇ = Sw + �(w), (6)
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where �(x, z, w), �(x, z, w), �(w) vanish at the origin with
their first-order derivatives. By P1, the eigenvalues of the matrix[
A + BH 1Cm BH

GCm F

]

are in C−, and those of S on the imaginary axis. Thus, the
system has a center manifold at (0, 0, 0), the graph of a mapping
x = �(w), z = �(w), with �(0) = 0, �(0) = 0 satisfying,

��

�w
s(w) = f (�(w)) + g(�(w))c(w) + p(�(w))w,

��

�w
s(w) = �(�(w), hm(�(w), w)).

The first equation of (5) is satisfied.
Suppose the second equation of (5) is not true at some

(�(wo), wo) sufficiently close to (0, 0). Then, M=‖h(�(wo))+
q(wo)‖ > 0 and there exists a neighborhood V of (�(wo), wo)

such that ‖h(�(w)) + q(w)‖ > M/2 at each (�(w), w) ∈ V .
If condition P2 holds for a trajectory starting at (�(wo), wo),
there exists T such that ‖h(�(w))+q(w)‖ < M/2 for all t > T .
However, if (�(wo), wo) is Poisson stable, then for some
t ′ > T ,(�(w(t ′)), w(t ′)) ∈ V and this contradicts the previous
inequality. So the second equation of (5) must be true, that is,
P2 can hold only if this center manifold is annihilated by the
error map e = h(x) + q(w).

The proof of sufficiency is constructive. In Theorem 1, as-
suming the equations (5) are satisfied with some �(w) and c(w),
consider the following control law,

u = �(z),

ż = �(z, ym), (7)

with z = col(z1, z2) and �(z) and �(z) defined by,

�(z) = c(z2) + H(z1 − �(z2)),

�(z, ym) = col(�1(z, ym), �2(z, ym)),

�1(z, ym) = f (z1) + p(z1)z2 + g(z1)c(z2)

+ H(z1 − �(z2)) − G1(hm(z1, z2) − ym),

�2(z, ym) = s(z2) − G2(hm(z1, z2) − ym),

where H , G1 and G2, with the assumptions of Theorem 1, can
be chosen such that A + BH and[
A − G1Cm P − G1Qm

−G2Cm S − G2Qm

]

have all their eigenvalues with negative real parts, which guar-
antees the Jacobian matrix of (4) is Hurwitz. Thus P1 is satis-
fied.

Because of the continuity of e = h(x) + q(w) and the limit
of w, it is easy to reach

lim
t→∞ e(x(t), w(t)) = lim

x→�(w)
e(x, w) = 0.

The property P2 is satisfied. �

Remark 1. The above theorem is very similar to the one in
Isidori and Byrnes (1990) for error feedback as well as its

proof. However, the controller in Theorem 1 is in the form
of measurement feedback. The measurement generally differs
from the output to regulate. For example in this study of train
handling, the outputs to be regulated are all the cars’ speeds
while only part of the speeds can be practically measured. On
the other hand, measurement feedback covers the form of error
or state feedback.

Remark 2. In particular, when w is known, for example, ym =
col(y1

m, w), the problem can be solved by

ż = f (z) + g(z)u + p(z)w + G1(y
1
m − hm(z, w)),

u = c(w) + H(z − �(w)), (8)

where G1, H are chosen such that A+BH and A−G1C
1
m are

Hurwitz (C1
m = �y1

m(0, 0)/�x.)

Remark 3. The parameters K, G can be determined with dif-
ferent kinds of methods, such as with pole placement. Although
K, G are chosen with a linear system theory, the output regu-
lation problem is solved with them.

3. Train model

A heavy haul train is composed of k locomotives and n − k

wagons (both referred to as cars). The longitudinal dynamics
of a train can be modeled as

miv̇i = ui + fini−1 − fini
− fai

, i = 1, 2, . . . , n,

ẋj = vj − vj+1, j = 1, 2, . . . , n − 1, (9)

where mi is the ith car’s mass, vi , ui are the speed and the
effort of the ith car. The variable fai

= faeroi
+ fpi

is the
force undertaken by the ith car from the environment. faeroi

=
mic0i

+mic1i
vi +mic2i

v2
i , where c0i

, c1i
and c2i

are constants
determined by experiments. The variable fpi

is a sum of fgi
,

the gravity force in longitudinal direction, and fci
, the curvature

resistance. The variable finj
is the in-train force between the

jth and (j + 1)th cars, which is a function of xj , the relative
displacement between the two neighboring cars.

A more detailed description of the model is referred to Chou
and Xia (2007) and Zhuan and Xia (2006).

4. Output regulation of heavy haul trains

In this paper, the 2–2 control strategy (Zhuan & Xia, 2006),
an ECP/iDP-only strategy is assumed, i.e., all the inputs may
be different. For (9), some changes are required to be done for
the application of output regulation. On the one hand, the origin
is not an equilibrium. On the other hand, there are a lot of tra-
jectories to regulate cars’ speeds to the reference speed. How-
ever, for train handling, the choice of the trajectories involves
the balance between energy consumption and in-train forces.
In this paper, optimal scheduling in Zhuan and Xia (2007) is
employed. With this optimal scheduling, the equilibrium can
be denoted as f 0

inj
(x0

j ), v0
i (vr ), u0

i , which are in-train forces
(coupler displacements), speeds (reference speed) and efforts
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of cars. The train model is rewritten as:

	v̇i = (	ui + 	fini−1 − 	fini
− 	f ai)/mi ,

	ẋj = 	vj − 	vj+1, i = 1, . . . , n, j = 1, . . . , n − 1, (10)

where 	vi = vi − v0
i , 	ui = ui − u0

i , 	fini
= fini

− f 0
ini

, 	xj =
xj − x0

j . With X = [	v1, . . . , 	vn, 	x1, . . . , 	xn−1]T and U =
[	u1, . . . , 	un]T, the system (10) is also denoted in the form

Ẋ = f (X) + g(X)U . (11)

The outputs to be regulated are the cars’ speeds, i.e., assuming
the reference speed is w1, ei = vi − w1 = Xi + vr − w1. The
measurement is part of the cars’ speeds, i.e., ym =Cm(X +vr),
where Cm=(Cij )pm×(2n−1) and all the entries of the row vectors
of Cm are zeros only except one of the first n ones which is
one. For example,

Cm =
[

1 0 0 · · · 0
0 1 0 · · · 0

]

if only the first two cars’ speeds are measured. Notice that the
measurement is different from the error output.

The linearized system of (11) has system matrixes

A =
[
A11 A12
A21 A22

]
, B =

[
diag

(
1

m1
, . . . ,

1

mn

)
0(n−1)×n

]
,

A11 = −diag(c11 + c21vr , . . . , c1n + c2nvr ),

A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0

kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0
kn−1

mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A21=
[ 1 −1 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1

]
, A22=0(n−1)×(n−1).

It can be verified that (A, B) is controllable and (A, Cm) is
observable with the PBH criterion in Kailath (1980).

[
I − A |B] =
⎡
⎣
In×n − A11 −A12 diag

(
1

mi

)
−A21 
I(n−1)×(n−1) 0(n−1)×n

⎤
⎦

∼
[

0n×n 0n×(n−1) In×n

I(n−1)×(n−1) 0 
I(n−1)×(n−1) 0(n−1)×n

]
,

from which one can get rank([
I −A |B])=2n−1. If the first
or last car’s speed is measured, the pair (A, Cm) is observable.
With the first car’s speed available, one has

� =
[
A − 
I

Cm

]
=

[
A11 − 
In×n A12

A21 −
I(n−1)×(n−1)

1 0 · · · 0 01×(n−1)

]

∼
[
I(2n−1)×(2n−1)

01×(2n−1)

]
,

from which one knows that rank(�) = 2n − 1, and the pair
(A, Cm) is observable according to the PBH criterion. Actually

Fig. 1. Modified speed profile.

the first car of a train is usually a locomotive, whose speed is
available. So the above assumption does not lose generality.

The speed maintenance phase, speed acceleration and speed
deceleration phases are discussed in this paper. The cars’ speeds
are the subject of regulation. According to the reference speed
profile, the trajectory of the reference speed can be redesigned
as w1 of

ẇ1 = aw2, ẇ2 = −a(w1 − w3), ẇ3 = 0, (12)

whose solution is w1=w3(0)+A sin(at+�0), w2=A cos(at+
�0), w3 = w3(0), where A and �0 are determined by the ini-
tial conditions (w1(0), w2(0), w3(0)). Within the cruise phase,
the initial conditions are chosen as (w1(0), w2(0), w3(0)) =
(vr , 0, vr ), where vr is the cruise speed. Assuming the refer-
ence speed before acceleration is vr1 and the reference speed
after acceleration is vr2 , then the initial conditions are chosen
such that w3(0)= vr1 , �0 = 0, A=√

2(vr2 − vr1). The variable
a in (12) is chosen with considering the acceleration limit ar or
deceleration limit ac of the train, which is determined by the ef-
fort capacity of the train. In simulation, a =ar/A within an ac-
celeration phase and a =ac/A within a deceleration phase. For
example, one chooses ar =0.07 m/s2, ac =−0.2 m/s2, �0 =0,
and the time interval T1 = �/4a as acceleration/deceleration
phase.The modified speed file according to the speed profile is
shown in Fig. 1.

From the above designed trajectories, the conditions in
Theorem 1 are satisfied if the regulator equations (5) are
solved. Actually, one can verify that X = �(w) = (w1 −
w3)col(11×n, 01×(n−1)), U = c(w) = w2B

−1
1 · 1n×1 −

B−1
1 f 1(�(w)), with f 1 is the first n entries of f and B1 is the

first n rows of B, is a pair of the solution of (5).
According to Remark 2, the output regulating controller with

measurement feedback is

ż = f (z) + g(z)U + G1(ym − Cmz),

U = c(w) + K(z − �(w)), (13)

where G1, K are chosen such that A+BK and A−G1Cm are
Hurwitz.

Based on the optimal scheduling and the output regulating
controller, the complete closed-loop controller is u = U + u0.



246 X. Zhuan, X. Xia / Automatica 44 (2008) 242–247

Fig. 2. Speed regulation with Kf = 1, Kv = 1, Ke = 1.

In simulation, K, G is chosen with a linear quadratic al-
gorithm (Chou & Xia, 2007). These choices of K and G are
consistent with Remark 3.

Since the throttle of the locomotives takes discrete values and
the braking capacities of the wagons are constrained, the input u
in the complete controller may violate these constraints. When
this happens, an anti-windup technique is employed in simula-
tion. For wagons, the application of the anti-windup technique
is very simple. For locomotives, inputs are discrete with some
operation constraints. Similar methods as described in Slotine
and Li (1991) are used to smooth continuous control inputs.
Assuming the required force of jth locomotives is Fj and the
output of admitted kth notch at current velocity vj is g(k, vj ),
the output force F r

j of the jth locomotives can be determined by

F r
j = g(k, vj ) if G(k − 1, vj )�Fj < G(k, vj ),

G(k, v) = g(k, vj ) + �(g(k + 1, vj ) − g(k, vj )),

where G(k, vj ) and G(k−1, vj ) are upper and lower boundaries
of the admitted notch k, respectively. The variable � is the ratio
of the separation for the boundary.

5. Simulation

The simulation setting and parameters are the same as those
in Zhuan and Xia (2007) except that the deceleration limit is
−0.2 m/s2. � is chosen as 0.5. The observer is designed with
the assumption that the front and rear locomotive group speeds
are available.

Table 1
Performance comparison

|	v̄|(m/s) |fin|(kN) E(MJ)

max mean std max mean std

S2 3.02 0.24 0.50 408.70 74.07 76.34 16,524
S3 3.01 0.37 0.47 405.70 70.77 78.04 15,007
S4 3.25 0.49 0.47 297.27 78.90 63.27 13,422

M2 2.98 0.30 0.53 329.39 54.28 65.28 12,713
M3 2.97 0.33 0.52 329.00 56.74 64.14 12,570
M4 3.61 0.90 0.62 405.34 98.41 73.50 10,493

Simulation result is shown in Fig. 2. The first subplot shows
the front locomotive group speed, rear locomotive group speed
and the mean speed of all the cars. The second subplot shows
maximum and minimum in-train forces and the mean value of
the absolute values of all the in-train forces at a specific time.
The third shows the front and rear locomotive groups’ notches.
The track profile is the same as that in Zhuan and Xia (2007)
and omitted here. From Fig. 2, it can be seen the train tracks the
reference speed well except within acceleration/deceleration
phases. This is because of the application of observer in latter,
which needs some time to track the states of the train. The
in-train forces in Fig. 2 are smaller than those of the LQR
controller in Zhuan and Xia (2007) at steady state. This is be-
cause the slower response (result of application of an observer)
leads to more gentle output. Table 1 shows the simulation
results of LQR controllers with state feedback Si, i = 2, 3, 4
advanced in Zhuan and Xia (2007) and measurement feedback
controllers Mi, i = 2, 3, 4 proposed in this paper with different
parameters.The indices 2,3,4 denote the different sets of pa-
rameters (Ke, Kf , Kv)= (1, 1, 10), (Ke, Kf , Kv)= (1, 10, 1),
(Ke, Kf , Kv) = (100, 1, 1), respectively. |	v̄| is the absolute
value of the difference between the reference velocity and the
mean value of all the cars’ velocities at a specific point. |fin| is
the mean value of the absolute values of all the couplers’ in-train
forces at a specific point. The items max, mean and std are the
maximum value, mean value and standard deviation of the sta-
tistical variable, respectively. From Table 1, it can be seen there
are more energy consumed in LQR controllers with state feed-
back than in output regulation controllers with measurement
feedback, no matter what the optimal parameters are. This is be-
cause for the state feedback controllers are sensitive to the state
deviation from the equilibrium and the energy optimization is
local, the locomotives’ traction efforts and the cars’ braking
change more frequently, which leads to consume more energy.

For the speed tracking, the optimal controller with state feed-
back is a little better than the output regulating controller with
measurement feedback, and for in-train forces, the former is
worse than the latter.

6. Conclusion

An approach of output regulation with measurement feed-
back is proposed for the control of heavy haul trains. The out-
put regulation problem of nonlinear systems with measurement
feedback is formulated and solved for the first time, extending
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the existing results. Based on a cascade-mass-point model, the
application of output regulation to train control is detailed. The
conditions of the application are verified. Optimal scheduling
is integrated in the controller of output regulation. Simulation
shows the feasibility of the output regulating controller with
only measurement of the locomotive speeds, in terms of its sim-
plicity, cost-effectiveness and its implementation convenience.
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