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a b s t r a c t

In this paper, the consensus problem of multi-agent following a leader is studied. An adaptive design
method is presented for multi-agent systems with non-identical unknown nonlinear dynamics, and for
a leader to be followed that is also nonlinear and unknown. By parameterizations of unknown nonlinear
dynamics of all agents, a decentralized adaptive consensus algorithm is proposed in networkswith jointly
connected topologies by incorporating local consensus errors in addition to relative position feedback.
Analysis of stability and parameter convergence of the proposed algorithm are conducted based on
algebraic graph theory and Lyapunov theory. Finally, examples are provided to validate the theoretical
results.
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1. Introduction

Distributed coordination of a group of dynamical agents is
of interest in control and robotics. This is due to the broad
applications of multi-agent systems in many areas, e.g., in multi-
vehicle rendezvous, formation control of multi-robots, flocking,
swarming, distributed sensor fusion, attitude alignment, and
congestion control in communication networks. An important
problem in distributed coordinated networks of dynamical agents
is to find a distributed control law so that all agents can reach
consensus on a common decision value. This problem is the so-
called consensus problem.

Early well-known works on consensus coordination for net-
works of dynamical agents have been done in the context of con-
trol theory in Fax and Murray (2004), Hatano and Mesbahi (2005),
Jadbabaie, Lin, and Morse (2003), Lin, Broucke, and Francis (2004),
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Moreau (2005), Olfati-Saber and Murray (2004), Ren and Beard
(2005), Savkin (2004), to name just a few. In recent years, relevant
topics on consensus problem have been extensively further inves-
tigated in different situations, for example, consensus in networks
with time-delays (Sun & Wang, 2009; Zhu & Cheng, 2010), finite-
time consensus (Khoo, Xie, & Man, 2009), consensus in stochastic
networks (Tahbaz-Salehi & Jadbabaie, 2008), quantized consensus
(Kashyap, Basar, & Srikant, 2007), etc.

Recently, an interesting topic is the consensus problem of a
group of agents with unknown information. In Hong, Hu, and Gao
(2006), the authors proposed a consensus algorithm of agents with
an active leader with unmeasurable state and variable interactive
topology. The algorithm is also extended to the case that the
interconnected graphs of agents are not always connected in
intervalswith identical length. In Bai, Arcak, andWen (2008, 2009),
the authors studied a coordination problem steering a group of
agents to a formation that translates with a prescribed reference
velocity. Decentralized adaptive designs are proposed for reference
velocity recovery using relative position feedback in Bai et al.
(2008) and tracking of the reference velocity by incorporating
relative velocity feedback in addition to relative position feedback
in Bai et al. (2009). In Hou, Cheng, and Tan (2009), the authors
proposed a robust decentralized adaptive control approach using
neural network to solve consensus problem of multi-agents with
uncertainties and external disturbances in undirected networks.
In Das and Lewis (2010), the authors presented a design method
for adaptive synchronization controllers for distributed systems
having non-identical unknown nonlinear dynamics, and for a
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target dynamics to be tracked that is also nonlinear and unknown.
Under some assumptions, the authors proved that the overall local
cooperative error vector and the neural networkweight estimation
errors are both uniformly ultimately bounded. In Yu, Lü, Chen,
Duan, and Zhou (2009), for an unknown regulatory network with
time delay and uncertain noise disturbance, an adaptive filtering
approach is proposed to ensure the stochastic stability of the
error states between the unknown network and the estimated
model. Other kinds of adaptive synchronization design of complex
dynamical networks are by using adaptive tuning of the coupling
strength (Yu, Chen, & Lü, 2009), network weights, etc.

In this paper, we consider the adaptive consensus coordination
problem of a group of agents with non-identical unknown
nonlinear dynamics in networks with jointly connected topologies
following a leaderwith also unknownnonlinear velocity dynamics.
By parameterizing the unknown nonlinear dynamics of all agents
by some basis functions, each agent estimating the unknown
parameters, a decentralized adaptive consensus algorithm is
developed in networks with jointly connected topologies by
using both relative position feedback and local consensus error
feedback of neighboring agents. By introducing Persistent excitation
(PE) condition for regressor matrix, both position errors and
parameter estimate errors can be proved to be globally uniformly
asymptotically convergent to zero based on the algebraic graph
theory and Lyapunov theory.

The contributions of this paper are mainly in two aspects.
First, a novel type decentralized adaptive consensus control
scheme is proposed for the considered multi-agent systems to
follow a leader in networks with jointly connected topologies,
by relative position and local consensus error feedback. When
unknown information or unmeasured information exists in the
system, there are few efforts in the literature considering networks
with switching topology, especially jointly connected topologies.
Except for Hong et al. (2006), the works (Bai et al., 2008, 2009;
Das & Lewis, 2010; Hou et al., 2009; Yu, Chen et al., 2009;
Yu, Lüet al., 2009) mentioned above are all for networks with
fixed topology. In Hong et al. (2006), the case of networks
with switching topologies and an extended case are studied.
However, the algorithm proposed in Hong et al. (2006) is not
strictly decentralized because each agent in the group must have
access to the information a0(t) of the leader. Moreover, in the
extended case of networks with switching topologies, it requires
that each time interval has identical length, and the total period
of connected interconnected graphs is sufficiently large. In our
case, only jointly connectedness is assumed. Second, sufficient
conditions are obtained for ensuring consensus with global,
uniform and asymptotical parameter convergence. The consensus
of all agents is ensured due to joint connectedness of graphs
in networks with jointly connected topologies. The PE condition
and some boundedness assumptions are introduced for ensuring
parameter convergence. The parameter convergence analysis is
more challenging when the interaction topology is switching. This
is particularly true for the case of networks with jointly connected
topologies, because standard results from adaptive control theory
cannot be applied to the system directly. The two papers (Bai
et al., 2008, 2009) also introduced PE condition for parameter
convergence analysis in fixed network topology. A situation of all
followers and the leader having non-identical unknown nonlinear
dynamics and external disturbances is considered in Das and Lewis
(2010), in which all consensus errors and parameter estimate
errors are proved to be uniformly ultimately bounded (UUB) based
on some assumptions in fixed network topologies. In Yu, Lüet al.
(2009), parameter convergence is not considered. In ourwork, both
consensus errors and parameter estimate errors converging to
zero (globally uniformly asymptotically) are obtained for switching
networks with joint connectedness.
This paper is organized as follows. In Section 2, we establish
the notation and formally state the problem. We present our
main results in Section 3, the simulation results supporting the
objectives of the paper in Section 4 and the concluding remarks
in Section 5.

2. Problem statement

We consider a multi-agent system consisting of N agents and a
leader. The dynamics of N agents are described by

ẋi(t) = fi(xi, t) + ui(t), i = 1, 2, . . . ,N, (1)

where xi(t) ∈ R is the position state of ith agent, ui(t) ∈ R is
the control input, and fi(xi, t) is the dynamics of agent i, which
is assumed to be unknown. Standard assumptions for existence
of unique solutions are made, i.e., fi(xi, t) is continuous in t and
Lipschitz in xi. We assume that the leader–agent moves in R and its
underlying dynamics is described by

ẋ0(t) = v0(t) (2)

where x0(t) ∈ R is the position state of the leader, v0(t) ∈ R is
its velocity and assumed to be unknown. The leader–agent moves
freely or along some planning trajectory, however, we assume that
its velocity dynamics v0(t) is only related to time t and unknown.

Remark 1. For avoiding complicated expressions, the states of all
agents are assumed to be scalars inR, which is trivial to be extended
to Rn by introducing the Kronecker product. The Kronecker product
of matrix A ∈ Rm×n and B ∈ Rp×q is defined as

A ⊗ B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

The information exchange between agents in amulti-agent system
can be modeled using graphs. A graph G(V, E) consists of a node
set V = {1, 2, . . . ,N} and an edge set E ⊂ V × V , where an edge
of the edge set E is denoted by (i, j). A graph is undirected if edges
(i, j) ∈ E are an unordered pair. A graph is simple if it has no self-
loops or repeated edges. If there is an edge between two nodes,
then the two nodes are neighbors (or adjacent) to each other. The
set of neighbors of node i is denoted by Ni = {j ∈ V|(i, j) ∈

E, j ≠ i}. A path is a sequence of connected edges in a graph. If
there is a path between any two nodes of a graph G, then G is said
to be connected, otherwise disconnected. The union of a collection
of graphs is a graphwith a node set and an edge set being the union
of the node set and the edge set of all of the graphs in the collection.
We say that a collection of graphs is jointly connected if the union
of its members is connected.

With regarding theN agents as the nodes inV , the relationships
between N agents can be conveniently described by a simple and
undirected graph G, in which an undirected edge (i, j) denotes that
agent i and j can sense, receive or obtain information from each
other. The adjacency matrix of graph G is denoted by A = [aij] ∈

RN×N , whose (ij)th entry is 1 if (i, j) is an edge of graph G and 0
if it is not. The degree matrix D ∈ RN×N of graph G is a diagonal
matrixwith ith diagonal element being |Ni|. The Laplacian of graph
G is defined as L = D − A, which is symmetric and have the
following well-known results in algebraic graph theory (Godsil &
Royle, 2001).

Lemma 2. Laplacian L of graph G has at least one zero eigenvalue
with 1N = (1, 1, . . . , 1)T ∈ RN as its eigenvector, and all the
non-zero eigenvalues of L are positive. Laplacian L has a simple zero
eigenvalue if and only if graph G is connected.
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Todescribe the information transmission betweenN agents and
the leader,weneeddefine another graph Ḡonnodes 0, 1, 2, . . . ,N ,
which consists of graph G, node 0 representing the leader and
edges between the leader and its neighbors.

Note that the interconnected topologies of the considered
multi-agent system can vary with time. We need to consider all
possible graphs {Ḡp|p ∈ P } on the node set {0, 1, 2, . . . ,N},
where P is an index set. The subgraphs defined on the node set
{1, 2, . . . ,N} can denoted as {Gp|p ∈ P } accordingly. To describe
the dependence of graphs upon time, we define a switching signal
σ(t) : [0, ∞) → P , which is piecewise constant. Therefore, the
underlying graphs at time t on N + 1 and N nodes are denoted
as Ḡσ(t) and Gσ(t), respectively. The index number between agent
i and the leader is denoted by bi(t), which is defined to be 1
whenever the leader–agent is agent i’s neighbor and 0 otherwise.
Note that neighbor sets Ni of all agents, all (ij)th entries aij of
adjacency matrix A, and graph Laplacian L are all time varying. We
use Ni(t), aij(t) and Lσ(t) to denote their time varying versions,
respectively. It is assumed in this paper that σ(t) switches finite
times in any bounded time interval.

In this work, we consider the problem of designing decentral-
ized controllers ui, i = 1, 2, . . . ,N , such that all agents follow the
leader.

For the multi-agent system (1)–(2), we say consensus is
achieved if, for each agent i ∈ {1, 2, . . . ,N}, there exists a
controller ui such that
lim
t→∞

|xi(t) − x0(t)| = 0, i = 1, 2, . . . ,N, (3)

for any initial condition xi(0), i = 0, 1, . . . ,N .
When v0(t) is known and fi(xi, t) = 0, i = 1, 2, . . . ,N , all

agent can reach consensus on the time-varying leader, for example,
using the following control scheme (Ren, 2007):

ui = v0(t) −


j∈Ni

aij(xi − xj) − bi(xi − x0). (4)

When v0(t) and fi(xi, t), i = 1, 2, . . . ,N , are all unknown, it is a
challenging work for all agents to achieve consensus.

3. Main results

In this section, we first give a basis function expression of the
unknown nonlinear dynamics and the unknown velocity dynamics
of the leader, and then a decentralized adaptive consensus
algorithm is proposed in networks with switching topologies
through relative position and local consensus error feedback.
Finally, stability analysis of the consensus algorithm is given in
switching networks with joint connectedness.

Suppose that the unknown nonlinear dynamics fi(xi, t), i =

1, . . . ,N , and the unknown velocity v0(t) of the leader, are
parameterized as

fi(xi, t) = φT
i (xi, t)θi, i = 1, 2, . . . ,N, (5)

and

v0(t) = φT
0 (t)θ0, (6)

where φ0(t), φi(xi, t) ∈ Rm are basis function column vectors and
θ0, θi ∈ Rm are unknown constant parameter column vectors to be
estimated.

Because θ0 is unavailable to each agent, the ith agent estimates
the unknown parameter vector θ0 by θ̂0i and v0(t) by v̂0i(t)
respectively. We have

v̂0i(t) = φT
0 (t)θ̂0i, i = 1, 2, . . . ,N. (7)

Similarly, the estimate of fi(xi, t) is expressed as

f̂i(xi, t) = φT
i (xi, t)θ̂i, i = 1, 2, . . . ,N, (8)

where θ̂i is the estimate of θi.
Remark 3. The unknown nonlinear dynamics of all agents are
assumed to be linearly parameterized. The linearly parameterized
models have been studied widely in classical adaptive control
(Marino & Tomei, 1995; Sastry & Bodson, 1989). The examples of
linearly parameterizedmodel of multi-agent systems can be found
in Bai et al. (2008, 2009).

3.1. Decentralized adaptive consensus algorithm design

Consider an infinite sequence of bounded, non-overlapping,
contiguous time intervals [tk, tk+1), k = 0, 1, 2, . . . , with t0 =

0, T0 ≤ tk+1 − tk ≤ T for some positive constants T0, T . Suppose
that in each time interval [tk, tk+1) there exists a sequence of non-
overlapping, contiguous subinterval

[t0k , t
1
k ), . . . , [t

l
k, t

l+1
k ), . . . , [t lk−1

k , t lkk ) (9)

with tk = t0k , tk+1 = t lkk for some integer lk ≥ 0 such that the time-
varying graph topology switches at time instants t0k , t

1
k , . . . , t

lk−1
k ,

in other words, the switching graph Ḡσ(t) is time invariant in
each of such subintervals. We assume that there exists a constant
number τ > 0, often called dwell time, such that t l+1

k − t lk ≥

τ , 0 ≤ l ≤ lk − 1. Note that in each of such subintervals
the interconnected graph Ḡσ(t) is permitted to be disconnected. A
collection of switching graphs {Ḡσ(s)|s ∈ [t, t+ △ t], △ t > 0} is
said to be jointly connected across a time interval [t, t+ △ t] if its
union is connected. For each p ∈ P ,Hp has N eigenvalues denoted
as λ1

p, λ
2
p, . . . , λ

N
p based on some labeling rule (Ni & Cheng, 2010).

DefineC (p) = {k|λk
p ≠ 0, k = 1, 2, . . . ,N}, we have the following

lemma (Ni & Cheng, 2010):

Lemma 4. Graphs Gp, p ∈ P are jointly connected across [tk, tk+1)
if and only if


t∈[tk,tk+1)

C (σ (t)) = {1, 2, . . . ,N}.

Define local consensus error vector (Khoo et al., 2009) for an
agent i as

ei(t) =


j∈Ni(t)

aij(t)(xi − xj) + bi(t)(xi − x0), i = 1, . . . ,N. (10)

The global error vector for switching graph Ḡσ(t) is expressed as

e(t) = Hσ(t)(x − 1Nx0), (11)

where Hσ(t) = Lσ(t) + Bσ(t), Lσ(t) is the Laplacian of graph
Gσ(t) and Bσ(t) is a diagonal matrix with diagonal elements
b1(t), b2(t), . . . , bN(t).

In each time interval [t lk, t
l+1
k ), k = 0, 1, . . . , 0 ≤ l ≤ lk − 1,

matrix Hσ(t) is time-invariant, then

ė(t) = Hσ(t)(ẋ − 1N ẋ0)

= Hσ(t)(f + u − 1Nv0(t)) (12)

where f = (f1, f2, . . . , fN)T .
We denote by col(xi)i∈S or col(xi) according to the context the

stack column vector of xi with i in some index set S, by col(x, y) the
stack column vector of vector x and y, etc. Letting x = col(xi), x̄ =

x − 1Nx0, u = col(ui), Θ̂0 = col(θ̂0i), Θ̂f = col(θ̂i) with i ∈

{1, 2, . . . ,N}, and σ(t) : [0, ∞) → P a switching signal, we
propose the following adaptive consensus scheme consisting of
two parts.

Decentralized feedback laws:

ui(t) = c


j∈Ni(t)

aij(t)(xj − xi) + cbi(t)(x0 − xi)

+ φT
0 (t)θ̂0i − φi(xi, t)T θ̂i, i = 1, 2, . . . ,N, (13)



1786 H. Yu, X. Xia / Automatica 48 (2012) 1783–1790
or in matrix form

u = −cHσ(t)x̄ + ΦT
0 Θ̂0 − ΦT

f Θ̂f (14)

where c > 0 is a constant number, Φ0 = (IN ⊗ φ0), Φf is a block
diagonal matrix with block diagonal elements φ1, φ2, . . . , φN , IN is
the N × N identity matrix.

Decentralized adaptive laws:

˙̂
θ0i = −

c0
c

φ0(t)

 
j∈Ni(t)

aij(t)(ei − ej) + bi(t)ei


,

˙̂
θ i =

c1
c

φi(xi, t)

 
j∈Ni(t)

aij(t)(ei − ej) + bi(t)ei


,

i = 1, 2, . . . ,N,

(15)

or in matrix form

˙̂
Θ0 = −

c0
c

Φ0Hσ(t)e,

˙̂
Θ f =

c1
c

ΦfHσ(t)e
(16)

where c0, c1 > 0 are constant numbers.

Remark 5. Note that controller ui(t) defined in (13) is decentral-
ized. For control purpose, we assume that the information of lo-
cal consensus error ei(t) of agent i is calculated and saved in its
memory at each time instant by each agent and available for its
neighbors. Controller ui(t) only depends on the information of rel-
ative position measurements and local consensus errors from its
neighboring agents. Similar way of information transmission can
be found, for instance, in the literature (Khoo et al., 2009; Ren,
2007; Ren, Moore, & Chen, 2009).

Remark 6. If the states xi(t), i = 0, 1, . . . ,N , of system (1)–(2)
are considered in Rn, a corresponding version of Eqs. (14) and (16)
is the following

u = −ce + (ΦT
0 ⊗ In)Θ̂0 − (ΦT

f ⊗ In)Θ̂f

˙̂
Θ0 = −

c0
c

(Φ0Hσ(t) ⊗ In)e,

˙̂
Θ f =

c1
c

(ΦfHσ(t) ⊗ In)e

where e = (Hσ(t) ⊗ In)(x − 1N ⊗ x0).

3.2. Stability analysis

Denote Θ0 = 1N ⊗ θ0, θ̄0i = θ̂0i − θ0, Θ̄0 = Θ̂0 − Θ0 =

col(θ̄0i), Θf = col(θi), θ̄i = θ̂i − θi, Θ̄f = Θ̂f − Θf = col(θ̄i), and
Θ̄ = col(Θ̄0, Θ̄f ). From Eqs. (10)–(16), we obtain the following
error dynamics of the system (1)–(2):

ė = −cHσ(t)e + Hσ(t)Φ
T
0 Θ̄0 − Hσ(t)Φ

T
f Θ̄f ,

˙̄Θ0 = −
c0
c

Φ0Hσ(t)e,

˙̄Θ f =
c1
c

ΦfHσ(t)e.

(17)

The matrix Hσ(t) corresponding to a graph Ḡσ(t), has the
following well-known properties (Ni & Cheng, 2010):

Lemma 7. (1) matrix Hσ(t) has nonnegative eigenvalues; (2) matrix
Hσ(t) is positive definite if and only if graph Ḡσ(t) is connected.
Let P be a positive semi-definite matrix, and λmin(P), λmax(P)
denote the smallest and the largest non-zero eigenvalue of matrix
P , respectively. For each p ∈ P , define µp = λmin(Hp) and νp =

λmax(Hp). Based on Lemma 7 and the fact that the index set P is
finite,

δmin = min{µp|p ∈ P }, δmax = max{νp|p ∈ P } (18)

are positive and independent of time t .
Before giving the theoretical results, we suppose that the

regressor matrix Φ =


Φ0
Φf


, is persistently exciting (PE) (Marino &

Tomei, 1995), that is, there exist two positive reals δ0 and α, such
that t+δ0

t
ΦΦTdτ ≥ αI > 0, ∀t ≥ 0. (19)

This PE condition ensures the information richness of the time
varying matrix Φ throughout the time, and guarantees parameter
convergence, i.e.,

lim
t→∞

∥θ̂0i − θ0∥ = 0, lim
t→∞

∥θ̂i − θi∥ = 0, (20)

for any initial condition θ̂0i(0), θ̂i(0), i = 1, 2, . . . ,N .
The PE condition has another interpretation, by reexpressing

the PE condition in scalar form t+δ0

t
ωTΦΦTωdτ ≥ α, ∀t ≥ 0, ∀ω : ∥ω∥ = 1. (21)

Lemma 8. If graphsGp, p ∈ P are jointly connected across each time
interval [tk, tk+1), then limt→∞ e(t) = 0 implies limt→∞ x̄(t) = 0.

Proof. Due to the symmetry of Hp, there exists an orthogonal
matrix Up such that

UpHpUT
p = Λp = diag{λi1

p , λi2
p , . . . , λiN

p }, (22)

where λ
i1
p , λ

i2
p , . . . , λ

iN
p are the N eigenvalues of Hp,

i1, i2, . . . , iN form a permutation of 1, 2, . . . ,N .
Let ε = Upx̄, we have

x̄T e = x̄THpx̄ = εTΛpε ≥ δmin


i∈C (σ (t lk))

ε2
i ≥ 0

for l = 0, 1, . . . , lk − 1.
Due to the joint connectedness of Gp, limt→∞ e(t) = 0 and

Lemma 4, we have limt→∞

lk−1
l=0


i∈C (σ (t lk))

ε2
i = limt→∞

N
i=1

aiε2
i = 0, where a1, a2, . . . , aN are some positive integers. This

implies limt→∞ εi = 0, i = 1, 2, . . . ,N . Then limt→∞ x̄ = 0. �

The following theorem is our main result.

Theorem 9. Consider the multi-agent system (1)–(2). Assume that
the switching interconnected graph Ḡσ(t) is jointly connected across
each time interval [tk, tk+1), k = 0, 1, . . . , φi and φ̇i, i =

0, 1, . . . ,N, are uniformly bounded and the PE condition defined
in (19) is satisfied, then, under the control law (13) and the parameter
adaptive law (15), (x̄, Θ̄) = 0 is a globally uniformly asymptotically
stable equilibriumpoint, i.e., consensus is reachedwith global, uniform
and asymptotical parameter convergence.

Proof. For multi-agent system (17), consider a Lyapunov function
candidate

V (t) =
1
2c

eT e +
1
2c0

Θ̄T
0 Θ̄0 +

1
2c1

Θ̄T
f Θ̄f . (23)

Obviously, V (t) is continuously differentiable at any time except
for the switching instants.
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At a non-switching time t , assume that the subsystem p ∈ P
is active, the time derivative of this Lyapunov function candidate
along the trajectory of the system (17) is V̇ (t) = −eTHpe. From
(22), let ẽ = Upe, we have

V̇ (t) = −ẽTΛpẽ

= −


i∈C (p)

λi
pẽ

T
i ẽi

≤ −δp


i∈C (p)

ẽTi ẽi

≤ −δmin


i∈C (p)

ẽTi ẽi

≤ 0. (24)

Therefore, limt→∞ V (t) = V (∞) exists.
In the following, we prove limt→∞ e(t) = 0.
Consider the infinite sequence {V (tk), k = 0, 1, . . .} and from

Cauchy’s convergence criteria, we have that, for ∀ϵ > 0, there
exists a positive integer K , such that, for ∀k > K , |V (tk+1) −

V (tk)| < ϵ or equivalently, |
 tk+1
tk

V̇ (t)dt| < ϵ. This integral can

be rewritten as
lk−1

l=0

 t l+1
k

t lk
V̇ (t)dt > −ϵ.

From (24), we have

− ϵ <

lk−1
l=0

 t l+1
k

t lk

V̇ (t)dt

≤ −δmin

lk−1
l=0

 t l+1
k

t lk


i∈C (σ (t lk))

ẽTi ẽidt (25)

and
lk−1
l=0

 t lk+τ

t lk


i∈C (σ (t lk))

ẽTi ẽidt ≤

lk−1
l=0

 t l+1
k

t lk


i∈C (σ (t lk))

ẽTi ẽidt

≤
ϵ

δmin
. (26)

Because lk is assumed to be finite in each time interval [tk, tk+1) for
k = 0, 1, . . . . Thus, for ∀k > K , we have t lk+τ

t lk


i∈C (σ (t lk))

ẽTi ẽidt ≤
ϵ

δmin
, l = 0, 1, . . . , lk − 1 (27)

or equivalently,

lim
t→∞

 t+τ

t


i∈C (σ (t lk))

ẽTi (s)ẽi(s)ds = 0, (28)

which implies that

lim
t→∞

lk−1
l=0

 t+τ

t


i∈C (σ (t lk))

ẽTi (s)ẽi(s)ds = 0.

From Lemma 4,


t∈[tk,tk+1)
C (σ (t)) = {1, 2, . . . ,N} due to the

joint connectivity of the graphs through the time interval [tk, tk+1),
we have

lim
t→∞

 t+τ

t

N
i=1

aiẽTi (s)ẽi(s)ds = 0,

where ai, i = 1, 2, . . . ,N , are some positive integers. Moreover,
from (23) and (24) it follows that both e and Θ̄ are uniformly
bounded for any t ≥ 0 and so is ė due to (17) and the
assumption that φi and φ̇i, i = 0, 1, . . . ,N , are uniformly
bounded. Therefore,

N
i=1 aiẽ

T
i (s)ẽi(s)ds is uniformly continuous.

From Barbalat’s Lemma, we have limt→∞

N
i=1 aiẽ

T
i (t)ẽi(t)dt = 0,

then limt→∞ ẽi(t) = 0, i = 1, 2, . . . ,N . Thus limt→∞ ei(t) =

0, i = 1, 2, . . . ,N . Therefore, from Lemma 8, limt→∞ |xi(t) −

x0(t)| = 0, i = 1, 2, . . . ,N .
Now, to show that for any initial condition

lim
t→∞

∥Θ̄(t)∥ = 0, (29)

i.e., for any ϵ > 0 there exists Tϵ > 0 such that ∥Θ̄(t)∥ < ϵ, ∀t >

Tϵ . We first prove the following claim.

Claim 10. Given any ϵ > 0 and T > 0, for any initial condition
e(0), Θ̄(0) there exists t > T such that ∥col(θ̄0i, θ̄i)∥ < ϵ, i =

1, 2, . . . ,N.

Proof of Claim 10. We equivalently show by contradiction that
for any ϵ > 0 and some i ∈ {1, 2, . . . ,N} a time T1 such that

∥col(θ̄0i, θ̄i)∥ > ϵ, ∀t ≥ T1 (30)

does not exist.
Without loss of generality, for the infinite sequence of time

intervals [tk, tk+1), k = 0, 1, . . . , consider an infinite subsequence
of time intervals [tkj , tkj+1), j = 0, 1, . . . with identical length T1
satisfying T0 ≤ T1 ≤ T , that is tkj+1 = tkj + T1. Define function

Ψ (Θ̄(t), t) =
1
2
[Θ̄T (t + T1)Θ̄(t + T1) − Θ̄T (t)Θ̄(t)]. (31)

Because limt→∞ e(t) = 0, limt→∞ V (t) = V (∞) exists and
(23), we have limt→∞ Θ̄(t)T Θ̄(t) = ηV (∞) with η some positive
constant number and then limt→∞ Ψ (Θ̄(t), t) = 0 due to (31).
Therefore, for ∀ϵ1 > 0, there exists tϵ1 > 0 such that

∥Ψ (Θ̄(t), t) − Ψ (Θ̄(t ′), t ′)∥ < ϵ1, ∀t, t ′ > tϵ1 . (32)

The time derivative of the function Ψ (Θ̄(t), t) defined in (31)
at time instant tkj is

Ψ̇ (Θ̄(tkj), tkj)

=

 tkj+T1

tkj

d
dτ

[Θ̄T (τ ) ˙̄Θ(τ )]dτ

= −
1
c

lk−1
l=0

 t l+1
kj

t lkj

d
dτ


[c0Θ̄T

0 Φ0 − c1Θ̄T
f Φf ]Hpe


dτ

=

lk−1
l=0

 t l+1
kj

t lkj


c20
c2

eTHpΦ
T
0 Φ0 −

c0
c

Θ̄T
0 Φ̇0

+
c1
c

Θ̄T
f Φ̇f +

c21
c2

eTHpΦ
T
f Φf


Hp

+ (c0Θ̄T
0 Φ0 − c1Θ̄T

f Φf )H2
p


edτ

−

lk−1
l=0

 t l+1
kj

t lkj


c0
c

Θ̄T
0 , −

c1
c

Θ̄T
f


ΦH2

pΦ
T


Θ̄0
−Θ̄f


dτ

, I1 − I2. (33)

Because e, Θ̄, φi, φ̇i are bounded, letting Me,MΘ ,MΦ > 0 be
such that ∥e∥ ≤ Me, ∥Θ̄0∥ ≤ MΘ , ∥Θ̄f ∥ ≤ MΘ , ∥Φ0∥ ≤ MΦ ,
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∥Φf ∥ ≤ MΦ, ∥Φ̇0∥ ≤ MΦ and ∥Φ̇f ∥ ≤ MΦ, ∀t ≥ 0, we can write
the first integral in (33) as

I1 ≤ M
lk−1
l=0

 t l+1
kj

t lkj

∥e∥dτ (34)

whereM = [
c20+c21

c2
δmaxMe+

(c0+c1)(1+cδmax)
c MΘ ]δmaxMΦ is a positive

constant.
Because lk, k = 1, 2, . . . , are assumed to be finite and

limt→∞ ∥e(t)∥ = 0, we have

I1 ≤
c0
2c

αγminδ
2
minϵ

2, ∀tkj ≥ T2, (35)

where γmin is defined in the sequel.
From (22), we have

H2
p = UT

p Λ2
pUp ≥ γpΛ

2
p, (36)

for some 0 < γp ≤ 1.
Without loss of generality, selecting c1 = c0 and letting Θ̃ =

col(Θ̄0, −Θ̄f ), we have

I2 ≥
c0
c

lk−1
l=0

 t l+1
kj

t lkj

γpΘ̃
TΦΛ2

pΦ
T Θ̃dτ . (37)

Let γmin = min{γp : p ∈ P }, (ΦT Θ̃)i represent the ith
component of ΦT Θ̃ , col(θ̄0i) and col(θ̄i) be column vectors with
components indexed by i ∈ C (σ (t lkj)), Θ̃p

= col[col(θ̄0i)i∈C (σ (t lkj
)),

col(θ̄i)i∈C (σ (t lkj
))],Mi,N+i be the principle submatrix of ΦΦT by

retaining like-numbered rows and columns indexed by {i,N + i :

i ∈ C (σ (t lkj))}, we have

I2 ≥
c0
c

γminδ
2
min

lk−1
l=0

 t l+1
kj

t lkj


i∈C (σ (t lkj

))

(ΦT Θ̃)2i dτ

=
c0
c

γminδ
2
min

lk−1
l=0

 t l+1
kj

t lkj

(Θ̃p)TMi,N+iΘ̃
pdτ . (38)

From the PE condition (19), we have t+δ0

t
Mi,N+idτ ≥ αI > 0, ∀t ≥ 0. (39)

Assume now by contradiction that there exists a time T1 so that
(30) holds, which implies that for some p, ∥Θ̃p

∥ > ϵ, due to
Lemma 4. From (21), (38), (39) and for some l

I2 ≥
c0
c

γminδ
2
min

 t lkj
+τ

t lkj

(Θ̃p)TMi,N+iΘ̃
pds

≥
c0
c

γminδ
2
minϵ

2
 t lkj

+τ

t lkj

(Θ̃p)T

∥Θ̃p∥
Mi,N+i

Θ̃p

∥Θ̃p∥
ds

≥
c0
c

αγminδ
2
minϵ

2, ∀tkj ≥ T1. (40)

From (33), (35) and (40), we obtain

Ψ̇ (Θ̄(tkj), tkj) ≤ −
c0
2c

αγminδ
2
minϵ

2 < 0, ∀tkj ≥ T3 (41)

with T3 = max{T1, T2, tϵ1}. Thus, from sign-preserving theorem
of continuous function, there exists an interval [tkj , tkj + δ) with
tkj ≥ T3, δ > 0 such that Ψ̇ (Θ̄(t), t) < −

c0
4c αγminδ

2
minϵ

2 < 0 holds
for ∀t ∈ [tkj , tkj + δ). Integrating Ψ̇ (Θ̄(t), t) from tkj to tkj + δ and
selecting ϵ1 =

c0
4c αγminδ

2
minϵ

2δ, we have

Ψ (Θ̄(tkj), tkj) − Ψ (Θ̄(tkj + δ), tkj + δ) > ϵ1, (42)

which contradicts (32). This completes the proof of the claim. �

By virtue of limt→∞ e(t) = 0, for any ϵ > 0 there exists a time
instant tϵ such that

∥e(t)∥ ≤


c

2min{c0, c1}
ϵ, ∀t ≥ tϵ . (43)

By virtue of the claim there exists a time instant Tϵ > tϵ such that

∥Θ̄(t)∥ ≤
1

√
2
ϵ. (44)

From the initial condition e(Tϵ) and Θ̄(Tϵ), according to (23), (43)
and (44), we have

∥Θ̄∥ ≤


min{c0, c1}

c
∥e(Tϵ)∥2 + ∥Θ̄(Tϵ)∥2 ≤ ϵ, ∀t ≥ Tϵ, (45)

which implies (29). Therefore the equilibrium is attractive. Since
limt→∞ e(t) = 0 and limt→∞ Θ̄(t) = 0 hold uniformly with
respect to the initial time instant, it follows that (e, Θ̄) is a
globally uniformly asymptotically stable equilibrium point. Note
that limt→∞ ∥e∥ = 0 implies limt→∞ ∥x̄∥ = 0 due to Lemma 8;
therefore limt→∞ |xi(t) − x0(t)| = 0, for ∀xi(0) ∈ R, i =

1, 2, . . . ,N and limt→∞ ∥θ̂0i − θ0∥ = 0, limt→∞ ∥θ̂i − θi∥ = 0,
for ∀θ̂0i(0) ∈ Rm, θ̂i(0) ∈ Rm, i = 1, 2, . . . ,N . �

Remark 11. The consensus stability proof of Theorem 9, which
uses some inequality techniques, Lemma 4 and Barbalat’s Lemma,
is motivated by that in Ni and Cheng (2010). The Lemma 4
from Ni and Cheng (2010) shows the relation between jointly
connected graphs and its non-zero eigenvalues, and plays a key
role in the stability analysis. However, for an adaptive design
of uncertain systems, both consensus stability and parameter
convergence are considered in this paper. For networks with
jointly connected topologies, the parameter convergence analysis
is more challenging.

Remark 12. From the proof of Theorem 9, we can see that the
consensus result limt→∞ |xi(t) − x0(t)| = 0, i = 1, 2, . . . ,N , is
derived without using the PE condition. Therefore, consensus of
multi-agent systems will be still reached in networks with jointly
connected topologies in the absence of the PE condition. In this
case, we certainly would not expect the parameter convergence.
In fact, when consensus is reached, ˙̄Θ will be equal to zero and
Θ̄ some constant vector. Therefore, no conclusion can be drawn
about the behavior of the estimation error Θ̄ in the absence of the
PE condition, except that it converges to a constant vector.

4. Simulations

In this section, we give two examples to validate our theoretical
results. In both examples, we consider a multi-agent system
consisting of five agents and a leader. The leader–agent’s unknown
velocity dynamic is parameterized as
v0(t) = [sin(t), cos(t)]θ0. (46)

We pick θ0 = [

√
3
2 ,

√
2
2 ]

T . The followers’ unknown nonlinear
dynamics are parameterized as
fi(xi, t) = [xi sin(t), xi cos(t)]θi, i = 1, 2, . . . , 5. (47)
We select θi = [

1
2 ,

1
2 ]

T , i = 1, 2, . . . , 5, as the true parameters to
be estimated. In both examples, all components of the initial state
of the system are chosen in interval [−5, 5] randomly.
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Fig. 1. Switching graphs.

Fig. 2. Consensus is reached applying (13) and (15) in networks with switching
topologies.

Fig. 3. Parameter convergence is guaranteed applying (13) and (15) in networks
with switching topologies.

Example 13. In this example, a finite automation with a set of
states {Ḡ1, Ḡ2, Ḡ3, Ḡ4} is shown in Fig. 1, which represents the
discrete states of a network with switching topologies. It starts
at the discrete state Ḡ1 and switches every three simulation time
steps to the next state according to the state machine in Fig. 1.
The proposed adaptive consensus scheme (13) and (15) is realized
in this situation and the simulation results are shown in Figs. 2
and 3. Figs. 2 and 3 show that consensus is reached, parameter
convergence is guaranteed under control law (13) and parameter
adaptive law (15), respectively.
Fig. 4. Jointly connected graphs.

Fig. 5. Consensus is reached applying (13) and (15) in networks with jointly
connected topologies.

Example 14. In this example, we consider the case of networks
with jointly connected topologies.We suppose that the possible in-
terconnected graphs are {Ḡ1, Ḡ2, Ḡ3, Ḡ4, Ḡ5, Ḡ6} which are shown
in Fig. 4, and switched every three simulation time steps to the next
graph as Ḡ1 → Ḡ2 → Ḡ3 → Ḡ4 → Ḡ5 → Ḡ6 → Ḡ1 · · ·. Note that
both Ḡ1 ∪ Ḡ2 ∪ Ḡ3 and Ḡ4 ∪ Ḡ5 ∪ Ḡ6 are connected; therefore both
{Ḡ1, Ḡ2, Ḡ3} and {Ḡ4, Ḡ5, Ḡ6} are jointly connected through some
time intervals. Control law (13) and parameter adaptive law (15)
are then realized in networks with jointly connected topologies.
Simulation results are shown in Figs. 5 and 6. Figs. 5 and 6 show
that consensus is reached and parameter convergence is guaran-
teed in jointly connected networks under (13) and (15), respec-
tively.

5. Conclusions

In this paper, we considered the consensus problem of multi-
agents with unknown nonlinear dynamics following a leader also
with unknown velocity dynamics. By adaptive control design,
consensus with parameter convergence is ensured. Graph theory
was used to describe the interconnection topologies. Lyapunov
theory and Barbalat’s lemma were employed for stability analysis.
The joint connectedness of graphs is a key condition to ensure
consensus achievement and the PE condition ensures parameter
convergence. Simulations showed the validity of our results.
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Fig. 6. Parameter convergence is guaranteed applying (13) and (15) in networks
with jointly connected topologies.
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