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In this paper, both upper bounds and lower bounds for all the Lyapunov exponents of continuous
differential systems are determined. Several examples are given to show the application of the
estimates derived here. ®004 American Institute of Physic§DOI: 10.1063/1.1768911

The Lyapunov exponents, first introduced by Oseledec,
play an important role in nonlinear systems, especially in
chaotic systems, mainly due to the fact that chaotic sys-
tems can be characterized with the positivity of the lead-
ing (or the largest) Lyapunov exponent. For parameter-
ized dynamical systems, the Lyapunov exponents are of
benefit to identification of some kinds of bifurcations. For
instance, if the leading Lyapunov exponent is zero but the
rest are negative for some bifurcation parameter value,
then the Hopf bifurcation occurs, if the first two (i.e., the
largest and the second largegtLyapunov exponents are
equal to zero but the rest are negative for some param-
eter value, then two-torus bifurcation occurs, and so on.
In this paper, the prior estimates for all the Lyapunov
exponents of a given continuous differential system are
derived. Several examples show that these estimates are
valid.

I. INTRODUCTION

Lyapunov exponents, introduced by Oseletignay a

z—)t(=f(x,t), (1) € QX (tg, +%) CR"™X (tg, + ),
X(to) =Xo, (1)

where f(x,t)=(fi(x,1),...,f,(x,1)) eR", f(x,t) is as-
sumed to be piece-wise continuous with respeatito() for
any t, and the Jacobiaf,(x,t) is bounded, i.e.||f,(x,t)]
<M, in which ||-|| is an arbitrary norm, X,t) e Q X (t,,
+00), andxgye ().

The fundamental solution matrik solves the following
initial-value problem:

do _ ®
E_ X(Xrt) y

B(ty)=1. )
Here ® also depends upax but we still used(t) for nota-
tional simplicity. We will see this will not influence the dis-
cussion later onl is the unit matrix.

Recall the definition of the Lyapunov exponents below.

Definition**8Let u,(t), k=1,2,...n, be the eigenvalues
of ® from Eq. (2), which satisfy |ui(t)|<|u(t)|=<-""
<|un(t)|. The Lyapunov exponents of the trajectoryx(t)

crucial role in analyzing dynamics of evolutionary systems,solving (1) are defined by

especially in chaotic and/or bifurcative systems. Until now,
many analyses and algorithms exist for the Lyapunov expo-

nents of a given systef!! Recently, Li and Chen derived a

bound for the Lyapunov exponents of discrete-time systems,

1
£ =Ilim sup- Injue(t)], k=1,2,..n.

t— 4o

These exponent§,, k=1,2,...n, are real numbers. The

with numerical examples showing the validity of the derivedexistence of this limit was establish&df .,(t)=0 for ar-

result!?

ferent from the existing oné<.In the present paper, we fur-

These estimates are easily computable, and are diRitrary t, then® is not invertible, and ;= —
not happen in general. Hence, here and hereafter, we assume

o which does

ther consider continuous systems. In similar spirits, we obthatu;(t) is not(identically equal to zero. Therefore) is
tain effective estimates of both upper and lower bounds oflWays supposed to be invertible.
their Lyapunov exponents. Several numerical examples are

shown to indicate the application of the prior estimates.
Consider the following nonautonomous system:

dAuthor to whom correspondence should be addressed. Telephone: 27-12-

4205917; fax: 27-12-3625000. Electronic mail: changpin.li@up.ac.za

Il. ESTIMATE OF THE BOUND

At first, several lemmas are introduced below.
Lemma 1 (Gronwall’s Inequality)® Let u(t):[0,a]—R
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such that
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t
u(t)<C+f Ku(s)ds
0

for all te[0,«]. Then
u(t)sce<

forall te[0,a].

Lemma 2 Let Ac C™*". Assume thath;, \z,....\,
are eigenvalues A’ A, whereA’ denotes the complex con-
jugate and transpose of the matAxanduq, wo,...,u, are
eigenvalues oA. Then,

(i) \j=0,i=1,2,...n.

(iit) min N=<gjmy=max\;, j=1,2,..n.

Lemma 2 gives the bounds fi;|, j=1,2,...n. The fol-
lowing lemma determines the bounds of mipand max\,; .

Lemma 3 Suppose thatAeC"™" is invertible,
max{]|AlJA~Y}<M, and all the eigenvalues &'A are put
in order\;<\,<---<\,, then

iy M=1,

(i) UM2<N\y, A\ =<M2.

Proof (i) M=1 can be seen from the fact th&t?
=[All- A =[AAT | =1.

(i) Obviously, A <|A’A|<|A|?><M?2. The first in-

equality is due to the fact that the spectral radius of a given

C. Li and X. Xia

By assumption®(t) is invertible. From Lemma 4, one
can find

d(@(t)d (t)) dd(t) >~ L(t)
0= T = O (1) +P(t) i
(8)
Equations(8) and(2) imply
Ez—dﬁlf (x,t)
dt XA
B (tg)=1. ©)

Integration of the first equation @®), then taking the matrix
norm in both sides, one has
t
o ol=1em [ ol 10
0

By almost the same reasoning &), one can obtain

D~ (t)]<eMt 1o, (1)
From (11), one can derive
the largest eigenvalue dfd ~1(t)]"® ()
<e?Mt-to), (12

matrix is not bigger than its arbitrary norm. On the otheramongst the moduli of all the eigenvalues & %(t),

hand, |A"Y<M implies the largest eigenvalue of

|1/u4(t)| is the largest one whergq(t) is the smallest ei-

(A~H'ATI<|A7Y*<=M?. So, the smallest eigenvalue of genvalue ofd(t) in absolute value. Utilizing Lemma 2
AA’'=1/M2. It is evident that the characteristic polynomial yields

of AA’ is the same as that &’A.® Therefore \;=1/M?2.
The proof is complete.

Lemma 4" Suppose that the matrices(t), B(t) are
differentiable with respect tband both are multipliable, then

d(A()B(t)) dA(t) dB(t)
o =~ i B(t)+A(t)_dt .

Now we find the upper bound of the largest Lyapunov

exponentf,, of system(1). Integrating systeni2) yields

1 <eM(t—tp)

Ha(t) ’
ie.,

| pa(t)]=e M0, (13
It immediately follows that

€,=—M. (14

So, the theorem below is established.

t p—
d(t)=| +f f (X, &)D(£)dE. 3) Theorem _iThe Lyapunov exponents,, k=1,2,...n of
t system(1) satisfy
Taking the matrix norm of both sides (8) leads to “M=l={,<---<{,=<M,
t in which M is the upper bound of the norm of the Jacobian
ol=1+m [ e @ fon.
. ’ _ Remark 1
Applying Lemma 1 to(4) gives (i) This theorem is also suitable for the autonomous sys-
| (t)]|<eMtto) (5) tem provided that the norm of the related Jacobian is

bounded.
(i) The bound of the Lyapunov exponents is uniquely
determined by the matrix norm of the Jacobiarf ¢f,t) for
©6) (1) or that of f(x) for the autonomous system.
(i) The lower bound and the upper bound of the
It immediately follows that the largest Lyapunov expo- Lyapunov exponents are even optimal for some systems,
nent of systen(1) satisfies which can be seen from the examples given later on. How-
<M ever, in general, this estimate is not the tightest. A tighter
. estimate is given below.
from the definition of the Lyapunov exponent a(&]. (iv) To compute chaotic attractors is not difficult if such
In the following, we determine the lower bound of the attractors exist, but to compute the Lyapunov exponents of
smallest Lyapunov exponeifit of system(1). the considered trajectory is often quite difficult since the as-

By the fact that the spectral radius of a given matrix is
not bigger than any norm of its, one has

| a(O]< (P (1)) <o,

()
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sociated numerical integration easily overflows. But fromTABLE I. Some special matrix measures.
our theorem, the Lyapunov exponents are bounded since tt
norm of the Jacobian is bounded mainly due to the attrac-
tiveness of the chaotic attractor. So new efficient and robust 2
algorithms for the Lyapunov exponents still need to be conﬂX”f; b

structed though there are many numerical methods presently. A
V2 2

orm inC" Matrix measure irc"*"

Ml(A)=m_ax(ajj+2 |a,-j|]
J 17]

. : I —
By Lemma 3, one can derive estimates for the Lyapunoyy,= Mo(A)= 5 Anaf A'+A)
exponents of a given discrete-time system in a similar man-
ner. [[x[... = max|x

. _ . Mx<A>=max[ai+E |a1-,-|]
Theorem 1: Consider a discrete-time system i 7

Xer1=F(X), xeQ, k=0,1,...,

Xo— given,
‘|(I)7l(t)||$ef:0M(7fx(x’T))dT,
where f is continuously differentiable. If mdif(x)],
[f71(x)|}=<M, xeQ, then for anyx, e Q, all its Lyapunov ~ So,
exponents of the considered orbits satisfy

1 [t
£,=—lim supt— M(—fy(x,7))d7.
to

—InMs{;s{,<---<{,<InM. t—+oo

The proof is easy, therefore is omitted here, oris referred  So, all the Lyapunov exponents (k=1,2,...n) of sys-
to Ref. 12. As a matter of fact, a tighter estimation for lowertem (1) satisfy

bound of the Lyapunov exponents is givérHere we intro-
duce Theorem 1just to compare with Theorem 1. _ 1 [t
In the following, a tighter estimate for a given continu-  —limsup— | M(—fy(x,7))dr

ous system is determined. t oo to
Integrating(2) from t to t+ 6 (6>0) yields 1t
<{=<limsup- | M(fy(x,7))dr. (18)

In general, for a given norm, to determine the corre-
sponding matrix measure is often difficult, €8) is only of
theoretical value. However, for 1-norm, 2-norm, and
w-norm, the associate matrix measures can be accurately

in which lims_y+[|0(8)||/6=0. From(15), one has

I (t+ o) =[P ]<([1+ 6f(x,D] = 1)- [ (1)]

+[o(8). computed. See Table'f.
Here,A=(@jj)nxn . AmadA +A) indicates the largest ei-
It follows that genvalue of the matrid’ +A. It should be noted that for a
given matrixA, M4(A) may be the smallest, but for another
()] matrix B, M,(B) (or M..(B)) may be the smallest.
Ts/\/l(fx(x,t))-HCD(t)ll (16) Theorem 2The Lyapunov exponents , k=1,2,...n, of
system(1) satisfy

where da(t)||/dt=lims_ o+ (|P(t+ )| — D (t)])/ 5, a<(,<B,
M (1) =lim 5o+ (|1 + 8F (x,1)| = 1)/8, which is so-
called “marix measure,” and which is a real number. in which

Multiplying e~ /1047 then integrating from, to t
in both sides of16) gives ) 1t

a=max —limsup- [ max —a;(7)
— 4+ t i
[ ()] < efig i, I
1 1t
+ a;; d7, zlimsu Nmin([Fx(X, 1) ]’
It follows that .E;ﬁ, | 'I(T”} T m sy ), MinlL (7]
1 +f dr,—|i L
Co=imsuey | Mt @ R e
On the other hand, by almost the same reasoning as that +; |aij(7)|]d7]-

of (17), from (9), one has

Downloaded 12 Aug 2004 to 140.113.192.137. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



560 Chaos, Vol. 14, No. 3, 2004 C. Li and X. Xia

—minl i 1t dx
B=min |tnlfgpt— tOrr]aX ajj(7) Frais
dy 1
+2 |a; ( T)|}d7 Ilmsup— max([fx(x,f)]’ pra e 04 (20
t—+o

dz
t e —t
+f(x,7))d7,lim sup— max( a;(7) at (—=1+2e Yz
t— 4o to i
By almost the same reasoning of Example 1, one has

+2 |aij(7)|}d7'J, M:l, and_M:€1:€2:_l<€3:l:M.
7
o ) From Theorem 2, one can derive the same result.
wherea;; (t) = dfi(x,t)/9x;, i, j=1,2,..n, " denotes the ma- So one can see that the upper bound or/and the lower

trix  transpose, Amin((fx(x7)]'+f(x7)),  Amal[f3D]"  bound derived in Theorems 1 and 2 can be optimal for some
+14(x,7)) stand for the smallest and largest eigenvalues of th@jferential systems.

matrix [ f,(x,7)]" +f,(X,7), respectively. Example 3819
Remark 2
(i) From 2), one has  [i"°dd(t)/dt dx
= [19F (x, )@ (7)dr. In (15), 6f,(x,t)®(t) is actually an a v
approximation off{”fx(x,r)CD(r)dr with order one. If its q
high-order approximation is used, then the estimation of _y:Z, (21)
[®(t)| will be theoretically more accurate but in fact diffi- dt

cult in applications, so is the estimation 6f. By the same -

explanation, the estimation df; will be theoretically more —=—0.62—y+[x|—

accurate iff{"°® 1(7)f,(x,7)d7 is approximated to high dt

orders. (21) is the simplest chaotic nonpolynomial autonomous sys-
(i) The bounds derived in Theorem 2 are nonsymmettem in R3, whose Lyapunov exponents were calculated

ric, and they are tighter than those derived in Theorem 1. below&°

¢,=—0.635, €,=0, ;=0.035.

The Jacobian of21) is given as

Ill. SEVERAL ILLUSTRATIVE EXAMPLES

Here, several examples are taken to show the validity of

Theorems in Sec. Il. 0 1 0
17

Example 1 J= 0 0 1

dx sgnx) -1 -0.6

a7

So
%:( 14+ %)y, (19) 1 —sgnx) —0.6sgrix)
J'J= —sgn(x) 2 0.6
dz _
a:(_l+2e—t)z. 0.6 ngX) 0.6 1.36

AlthoughJ andJ’J are not continuous at=0, the char-
Here, the Jacobian is a diagonal matrix, namely,acteristic polynomial ofl’J,

diag(—1,—1+1/(1+t),—1+2e™Y), its spectral norm is 1,
i.e., M=1. The solution of PM)=(=D(A=2)(A 1.3 -0.36r-2)— (A

db 1 —-1.36-0.3G\—1)—0.72,
_ 1 _ - -t
o dlag< 1,—-1+ Tt 1+2e D,

P(0)=

does not depend uporx,fy,z), so is continuous irR>. Its
three roots are

©n1=0.330, u,=1, w3=3.023.
Obviously,

(I)(t) — diage—t'e—t-F|n(l+t),e—t—267t).
—M<€,<,<l3<M=1/3.023=1.7387,

It follows that the Lyapunov exponents (f9) are
which conforms with Theorem 1 again.

€1=t==—1e[~MM]. On the other hand, the smallest eigenvalue and the larg-
By using Theorem 2, one can also easily see thdt est one of)’+J are —1.92 and 1.23, respectively. Obvi-

={1<{l,<{3=—1. ously, —0.96<¢,<¢{,=<{3<0.615 is also satisfied(See
Example 2 Theorem 2.
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The following example is somewhat complicated. We
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1

t
only compare the calculation results with Theorem 2 since itim sup- max( aji(7)+ ;I |ayj(7)| { d7=2.7623.

is known that the bounds determined in Theorem 2 are

tighter than those derived in Theorem 1.

Example 4 Consider the following Rssler syster?

X=-y-z,
y=Xx+ay,

z=b+z(x—c).

Whena=b=0.2,c=5.7,(22) has a chaotic attractor, and the
corresponding exponents aré,=-—5.391, ¢,=0, ¢,

=0.07141%20
The Jacobian of22) reads as

0 -1 -1
J=|1 0.2 0
z 0 x—=57

in whicha=b=0.2,¢c=5.7 are used.
The eigenvalues al’ +J are listed below

A =X—5.7-J(x=5.7%+(z—1)%?, A,=0.4,

A3=Xx—5.7+(x—5.7)%+(z—1)°.
By numerical integrations, we get

1 [t
—lim sup—
t— 4+ t

ma.X[_a”(T)'f';j |aij(7-)| dr
j I

to

=—7.6267,

1 1 ,
S TMSUpE [ Nl [£,07)1+ ()

t—+oo to
=-—-12.4419,

1
—lim sup- t max[—aii(T)JrZ |aij(7)|]d7'
) IEa

t—+oo to i
=—-6.9871,

1 [t
lim sup— max[ a(n+ 2 |aij(7-)|]dr=2.2446,
t— oo to j I#]

1 1t
2

t— 4+ 0

=lim supt— Nmad[Fx(X,7)]" +f (X, 7))dr=1.6812,
t

t— 4+ to i
S0 a=-6.9871,8=1.6812(see Theorem)2 Obviously,
a<t,=-5.391<{,=0<{3=0.0714& 3,

which conforms with Theorem 2.
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