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In this paper, both upper bounds and lower bounds for all the Lyapunov exponents of continuous
differential systems are determined. Several examples are given to show the application of the
estimates derived here. ©2004 American Institute of Physics.@DOI: 10.1063/1.1768911#

The Lyapunov exponents, first introduced by Oseledec,
play an important role in nonlinear systems, especially in
chaotic systems, mainly due to the fact that chaotic sys-
tems can be characterized with the positivity of the lead-
ing „or the largest… Lyapunov exponent. For parameter-
ized dynamical systems, the Lyapunov exponents are of
benefit to identification of some kinds of bifurcations. For
instance, if the leading Lyapunov exponent is zero but the
rest are negative for some bifurcation parameter value,
then the Hopf bifurcation occurs, if the first two „i.e., the
largest and the second largest… Lyapunov exponents are
equal to zero but the rest are negative for some param-
eter value, then two-torus bifurcation occurs, and so on.
In this paper, the prior estimates for all the Lyapunov
exponents of a given continuous differential system are
derived. Several examples show that these estimates are
valid.

I. INTRODUCTION

Lyapunov exponents, introduced by Oseledec,1 play a
crucial role in analyzing dynamics of evolutionary systems,
especially in chaotic and/or bifurcative systems. Until now,
many analyses and algorithms exist for the Lyapunov expo-
nents of a given system.2–11 Recently, Li and Chen derived a
bound for the Lyapunov exponents of discrete-time systems,
with numerical examples showing the validity of the derived
result.12 These estimates are easily computable, and are dif-
ferent from the existing ones.11 In the present paper, we fur-
ther consider continuous systems. In similar spirits, we ob-
tain effective estimates of both upper and lower bounds of
their Lyapunov exponents. Several numerical examples are
shown to indicate the application of the prior estimates.

Consider the following nonautonomous system:

dx

dt
5 f ~x,t !, ~x,t !PV3~ t0 ,1`!,Rn3~ t0 ,1`!,

x~ t0!5x0 , ~1!

where f (x,t)5( f 1(x,t),...,f n(x,t))8PRn, f x(x,t) is as-
sumed to be piece-wise continuous with respect tox in V for
any t, and the Jacobianf x(x,t) is bounded, i.e.,i f x(x,t)i
<M , in which i•i is an arbitrary norm, (x,t)PV3(t0 ,
1`), andx0PV.

The fundamental solution matrixF solves the following
initial-value problem:

dF

dt
5 f x~x,t !F,

~2!
F~ t0!5I .

HereF also depends uponx, but we still useF(t) for nota-
tional simplicity. We will see this will not influence the dis-
cussion later on,I is the unit matrix.

Recall the definition of the Lyapunov exponents below.
Definition:1,4,8Let mk(t), k51,2,...,n, be the eigenvalues

of F from Eq. ~2!, which satisfy um1(t)u<um2(t)u<¯

<umn(t)u. The Lyapunov exponents,k of the trajectoryx(t)
solving ~1! are defined by

,k5 lim sup
t→1`

1

t
lnumk~ t !u, k51,2,...,n.

These exponents,k , k51,2,...,n, are real numbers. The
existence of this limit was established.1 If m1(t)50 for ar-
bitrary t, thenF is not invertible, and,152` which does
not happen in general. Hence, here and hereafter, we assume
that m1(t) is not ~identically! equal to zero. Therefore,F is
always supposed to be invertible.

II. ESTIMATE OF THE BOUND

At first, several lemmas are introduced below.
Lemma 1 (Gronwall’s Inequality):13 Let u(t):@0,a#→R

be continuous and nonnegative. SupposeC>0, K>0 are
such that
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u~ t !<C1E
0

t

Ku~s!ds

for all tP@0,a#. Then

u~ t !<CeKt

for all tP@0,a#.
Lemma 2:14 Let APCn3n. Assume thatl1 , l2 ,...,ln

are eigenvalues ofA8A, whereA8 denotes the complex con-
jugate and transpose of the matrixA, andm1 , m2 ,...,mn are
eigenvalues ofA. Then,

~i! l i>0, i 51,2,...,n.
~ii ! mini li<m̄jmj<maxil i , j 51,2,...,n.
Lemma 2 gives the bounds ofum j u, j 51,2,...,n. The fol-

lowing lemma determines the bounds of mini li and maxi li .
Lemma 3: Suppose that APCn3n is invertible,

max$iAi,iA21i%<M, and all the eigenvalues ofA8A are put
in orderl1<l2<¯<ln , then

~i! M>1,
~ii ! 1/M2<l1 , ln<M2.
Proof: ~i! M>1 can be seen from the fact thatM2

>iAi•iA21i>iAA21i51.
~ii ! Obviously, ln<iA8Ai<iAi2<M2. The first in-

equality is due to the fact that the spectral radius of a given
matrix is not bigger than its arbitrary norm. On the other
hand, iA21i<M implies the largest eigenvalue of
(A21)8A21<iA21i2<M2. So, the smallest eigenvalue of
AA8>1/M2. It is evident that the characteristic polynomial
of AA8 is the same as that ofA8A.15 Therefore,l1>1/M2.
The proof is complete.

Lemma 4:15 Suppose that the matricesA(t), B(t) are
differentiable with respect tot and both are multipliable, then

d~A~ t !B~ t !!

dt
5

dA~ t !

dt
B~ t !1A~ t !

dB~ t !

dt
.

Now we find the upper bound of the largest Lyapunov
exponent,n of system~1!. Integrating system~2! yields

F~ t !5I 1E
t0

t

f x~x,j!F~j!dj. ~3!

Taking the matrix norm of both sides of~3! leads to

iF~ t !i<11ME
t0

t

iF~j!idj. ~4!

Applying Lemma 1 to~4! gives

iF~ t !i<eM ~ t2t0!. ~5!

By the fact that the spectral radius of a given matrix is
not bigger than any norm of its, one has

umn~ t !u<iF~ t !i<eM ~ t2t0!. ~6!

It immediately follows that the largest Lyapunov expo-
nent of system~1! satisfies

,n<M ~7!

from the definition of the Lyapunov exponent and~6!.
In the following, we determine the lower bound of the

smallest Lyapunov exponent,1 of system~1!.

By assumption,F(t) is invertible. From Lemma 4, one
can find

05
d~F~ t !F21~ t !!

dt
5

dF~ t !

dt
F21~ t !1F~ t !

dF21~ t !

dt
.

~8!

Equations~8! and ~2! imply

dF21

dt
52F21f x~x,t !,

~9!
F21~ t0!5I .

Integration of the first equation of~9!, then taking the matrix
norm in both sides, one has

iF21~ t !i<11ME
t0

t

iF21~j!idj. ~10!

By almost the same reasoning of~5!, one can obtain

iF21~ t !i<eM ~ t2t0!. ~11!

From ~11!, one can derive

the largest eigenvalue of@F21~ t !#TF21~ t !

<e2M ~ t2t0!. ~12!

Amongst the moduli of all the eigenvalues ofF21(t),
u1/m1(t)u is the largest one wherem1(t) is the smallest ei-
genvalue ofF(t) in absolute value. Utilizing Lemma 2
yields

U 1

m1~ t !U<eM ~ t2t0!,

i.e.,

um1~ t !u>e2M ~ t2t0!. ~13!

It immediately follows that

,1>2M . ~14!

So, the theorem below is established.
Theorem 1: The Lyapunov exponents,k , k51,2,...,n of

system~1! satisfy

2M<,1<,2<¯<,n<M ,

in which M is the upper bound of the norm of the Jacobian
f x(x,t).

Remark 1
~i! This theorem is also suitable for the autonomous sys-

tem provided that the norm of the related Jacobian is
bounded.

~ii ! The bound of the Lyapunov exponents is uniquely
determined by the matrix norm of the Jacobian off (x,t) for
~1! or that of f (x) for the autonomous system.

~iii ! The lower bound and the upper bound of the
Lyapunov exponents are even optimal for some systems,
which can be seen from the examples given later on. How-
ever, in general, this estimate is not the tightest. A tighter
estimate is given below.

~iv! To compute chaotic attractors is not difficult if such
attractors exist, but to compute the Lyapunov exponents of
the considered trajectory is often quite difficult since the as-
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sociated numerical integration easily overflows. But from
our theorem, the Lyapunov exponents are bounded since the
norm of the Jacobian is bounded mainly due to the attrac-
tiveness of the chaotic attractor. So new efficient and robust
algorithms for the Lyapunov exponents still need to be con-
structed though there are many numerical methods presently.

By Lemma 3, one can derive estimates for the Lyapunov
exponents of a given discrete-time system in a similar man-
ner.

Theorem 18: Consider a discrete-time system

xk115 f ~xk!, xkPV, k50,1,...,

x02given,

where f is continuously differentiable. If max$if(x)i,
i f 21(x)i%<M , xPV, then for anyx0PV, all its Lyapunov
exponents of the considered orbits satisfy

2 ln M<,1<,2<¯<,n< ln M .

The proof is easy, therefore is omitted here, or is referred
to Ref. 12. As a matter of fact, a tighter estimation for lower
bound of the Lyapunov exponents is given.12 Here we intro-
duce Theorem 18 just to compare with Theorem 1.

In the following, a tighter estimate for a given continu-
ous system is determined.

Integrating~2! from t to t1d (d.0) yields

F~ t1d!5@ I 1d f x~x,t !#F~ t !1o~d!, ~15!

in which limd→01io(d)i /d50. From~15!, one has

iF~ t1d!i2iF~ t !i<~ i I 1d f x~x,t !i21!•iF~ t !i

1io~d!i .

It follows that

diF~ t !i
dt

<M~ f x~x,t !!•iF~ t !i ~16!

where diF(t)i /dt5 limd→01(iF(t1d)i2iF(t)i)/d,
M( f x(x,t))5 limd→01(i I 1d f x(x,t)i21)/d, which is so-
called ‘‘marix measure,’’ and which is a real number.16

Multiplying e2* t0

t M( f x(x,t))dt then integrating fromt0 to t
in both sides of~16! gives

iF~ t !i<e* t0

t M~ f x~x,t!!dt.

It follows that

,n< lim sup
t→1`

1

t Et0

t

M~ f x~x,t!!dt. ~17!

On the other hand, by almost the same reasoning as that
of ~17!, from ~9!, one has

iF21~ t !i<e* t0

t M~2 f x~x,t!!dt.

So,

,1>2 lim sup
t→1`

1

t Et0

t

M~2 f x~x,t!!dt.

So, all the Lyapunov exponents,k (k51,2,...,n) of sys-
tem ~1! satisfy

2 lim sup
t→1`

1

t Et0

t

M~2 f x~x,t!!dt

<,k< lim sup
t→1`

1

t Et0

t

M~ f x~x,t!!dt. ~18!

In general, for a given norm, to determine the corre-
sponding matrix measure is often difficult, so~18! is only of
theoretical value. However, for 1-norm, 2-norm, and
`-norm, the associate matrix measures can be accurately
computed. See Table I.16

Here,A5(ai j )n3n , lmax(A81A) indicates the largest ei-
genvalue of the matrixA81A. It should be noted that for a
given matrixA, M1(A) may be the smallest, but for another
matrix B, M2(B) ~or M`(B)) may be the smallest.

Theorem 2: The Lyapunov exponents,k , k51,2,...,n, of
system~1! satisfy

a<,k<b,

in which

a5maxH 2 lim sup
t→1`

1

t Et0

t

max
j

H 2aj j ~t!

1(
iÞ j

uai j ~t!uJ dt,
1

2
lim sup
t→1`

1

t Et0

t

lmin~@ f x~x,t!#8

1 f x~x,t!!dt,2 lim sup
t→1`

1

t Et0

t

max
i

H 2aii ~t!

1(
j Þ i

uai j ~t!uJ dtJ ,

TABLE I. Some special matrix measures.

Norm in Cn Matrix measure inCn3n

ixi15(
i51

n

uxiu M1~A!5max
j

Hajj1(
iÞj

uaij uJ
ixi25A(

i 51

n

uxi u2 M2~A!5
1

2
lmax~A81A!

ixi`5maxiuxiu M`~A!5max
i

Haii1(
jÞi

uaij uJ
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b5minH lim sup
t→1`

1

t Et0

t

max
j

H aj j ~t!

1(
iÞ j

uai j ~t!uJ dt,
1

2
lim sup
t→1`

1

t Et0

t

lmax~@ f x~x,t!#8

1 f x~x,t!!dt, lim sup
t→1`

1

t Et0

t

max
i

H aii ~t!

1(
j Þ i

uai j ~t!uJ dtJ ,

whereai j (t)5] f i(x,t)/]xj , i, j 51,2,...,n, 8 denotes the ma-
trix transpose, lmin(@fx(x,t)#81fx(x,t)), lmax(@fx(x,t)#8
1fx(x,t)) stand for the smallest and largest eigenvalues of the
matrix @ f x(x,t)#81 f x(x,t), respectively.

Remark 2
~i! From ~2!, one has * t

t1ddF(t)/dt
5* t

t1d f x(x,t)F(t)dt. In ~15!, d f x(x,t)F(t) is actually an
approximation of* t

t1d f x(x,t)F(t)dt with order one. If its
high-order approximation is used, then the estimation of
iF(t)i will be theoretically more accurate but in fact diffi-
cult in applications, so is the estimation of,n . By the same
explanation, the estimation of,1 will be theoretically more
accurate if* t

t1dF21(t) f x(x,t)dt is approximated to high
orders.

~ii ! The bounds derived in Theorem 2 are nonsymmet-
ric, and they are tighter than those derived in Theorem 1.

III. SEVERAL ILLUSTRATIVE EXAMPLES

Here, several examples are taken to show the validity of
Theorems in Sec. II.

Example 1:17

dx

dt
52x,

dy

dt
5S 211

1

11t D y, ~19!

dz

dt
5~2112e2t!z.

Here, the Jacobian is a diagonal matrix, namely,
diag(21,2111/(11t),2112e2t), its spectral norm is 1,
i.e., M51. The solution of

dF

dt
5diagS 21,211

1

11t
,2112e2tDF,

F~0!5I ,

is

F~ t !5diag~e2t,e2t1 ln~11t !,e2t22e2t
!.

It follows that the Lyapunov exponents of~19! are

,15,25,3521P@2M ,M #.

By using Theorem 2, one can also easily see that21
5,1<,2<,3521.

Example 2:

dx

dt
52x,

dy

dt
5S 12

1

11t D y, ~20!

dz

dt
5~2112e2t!z.

By almost the same reasoning of Example 1, one has

M51, and 2M5,15,2521,,3515M .

From Theorem 2, one can derive the same result.
So one can see that the upper bound or/and the lower

bound derived in Theorems 1 and 2 can be optimal for some
differential systems.

Example 3:18,19

dx

dt
5y,

dy

dt
5z, ~21!

dz

dt
520.6z2y1uxu21.

~21! is the simplest chaotic nonpolynomial autonomous sys-
tem in R3, whose Lyapunov exponents were calculated
below:18,19

,1520.635, ,250, ,350.035.

The Jacobian of~21! is given as

J5S 0 1 0

0 0 1

sgn~x! 21 20.6
D .

So

J8J5S 1 2sgn~x! 20.6 sgn~x!

2sgn~x! 2 0.6

20.6 sgn~x! 0.6 1.36
D .

AlthoughJ andJ8J are not continuous atx50, the char-
acteristic polynomial ofJ8J,

p~l!5~l21!~l22!~l21.36!20.36~l22!2~l

21.36!20.36~l21!20.72,

does not depend upon (x,y,z), so is continuous inR3. Its
three roots are

m150.330, m251, m353.023.

Obviously,

2M,,1,,2,,3,M5A3.02351.7387,

which conforms with Theorem 1 again.
On the other hand, the smallest eigenvalue and the larg-

est one ofJ81J are 21.92 and 1.23, respectively. Obvi-
ously, 20.96<,1<,2<,3<0.615 is also satisfied.~See
Theorem 2.!
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The following example is somewhat complicated. We
only compare the calculation results with Theorem 2 since it
is known that the bounds determined in Theorem 2 are
tighter than those derived in Theorem 1.

Example 4: Consider the following Ro¨ssler system20

ẋ52y2z,

ẏ5x1ay, ~22!

ż5b1z~x2c!.

Whena5b50.2,c55.7,~22! has a chaotic attractor, and the
corresponding exponents are,1525.391, ,250, ,3

50.0714.19,20

The Jacobian of~22! reads as

J5S 0 21 21

1 0.2 0

z 0 x25.7
D

in which a5b50.2, c55.7 are used.
The eigenvalues ofJ81J are listed below

l15x25.72A~x25.7!21~z21!2, l250.4,

l35x25.71A~x25.7!21~z21!2.

By numerical integrations, we get

2 lim sup
t→1`

1

t Et0

t

max
j

H 2aj j ~t!1(
iÞ j

uai j ~t!uJ dt

527.6267,

1

2
lim sup
t→1`

1

t Et0

t

lmin~@ f x~x,t!#81 f x~x,t!!dt

5212.4419,

2 lim sup
t→1`

1

t Et0

t

max
i

H 2aii ~t!1(
j Þ i

uai j ~t!uJ dt

526.9871;

lim sup
t→1`

1

t Et0

t

max
j

H aj j ~t!1(
iÞ j

uai j ~t!uJ dt52.2446,

1

2
lim sup
t→1`

1

t Et0

t

lmax~@ f x~x,t!#81 f x~x,t!!dt51.6812,

lim sup
t→1`

1

t Et0

t

max
i

H aii ~t!1(
j Þ i

uai j ~t!uJ dt52.7623.

So a526.9871,b51.6812~see Theorem 2!. Obviously,

a,,1525.391,,250,,350.0714,b,

which conforms with Theorem 2.
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