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Abstract

A quantized feedback gives rise to a system of the form x+ = f(x) = ax � q(x), in which q(x) is the quantized feed-
back. Polynomials with ‘‘quantized’’ coefficients are introduced, and their properties are investigated. With the help of
the roots of some interesting groups of polynomials derived from the polynomials with quantized coefficients, we char-
acterize the value for a such that a periodic point of a certain order appears. It is shown that there are lower and upper
bounds on a for the existence of a periodic point of a certain order. An exact (minimal) upper bound is also found for
periodic points of any order.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In [9], the periodicity introduced by D-modulated feedback control of a scalar system with a scaling parameter a is
completely characterized, and it is shown that a periodic point of a certain order exists if and only if jaj is bigger or
equal to a real number determined as a unique root in (1,1) of a polynomial. In particular, when a is big enough, there
are periodic points of any order. Some results are also obtained for general high order systems subject to D-modulated
feedback in [10].

There are some recent interests in quantized feedback control [2,1,4,6]. D-modulated feedback control is a two-level
quantized feedback control without a deadzone, and a quantized feedback control is a cascade of D-modulated feed-
back control with a center deadzone. It has been well-known that both kinds of controls introduce periodicity into
the system. The spectrum information of the digital output signals is practically important for in helping developing
preventive measures if they are necessary. Yet it is difficult to characterize the periodicity due to the introduction of
the discontinuities in D-modulation and quantization using established results and techniques for continuous maps
[3,5,7,8]. It is remarked that there is no systematic study and rigorous results concerning periodicity due to quantized
feedback.

In this paper, we study the periodicity of a scalar system under a feedback control with a two-level quantization. Our
results will reveal that even for such simple cases, the appearance of periodicity of different orders with respect to the
parameter a exhibits very interesting phenomenon. We will show that, similar to D-modulated control, there is a lower
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bound on a, and contrary to D-modulated control, there is an upper bound on a, so that a periodic point of a certain
order exists. We also find the exact minimal upper bound for each periodic order with the help of interesting groups of
polynomials. Discussions on the lower bounds are also given.

In Section 2, we introduce some groups of polynomials and study their properties. These are used in Section 3 to
characterize the existence of periodic orbits arising from the system under a two-level quantized feedback control. Sec-
tion 4 is devoted to conclusion.
2. Polynomials and their roots

We collect here some preliminaries that are needed in the later development.

Proposition 1. Let f(x) 2 C1[a,1), where a is a real, satisfying
f ðaÞ 6 0; lim
x!1

f ðxÞ ¼ þ1.
If f 0(a) < 0 and f 0(x) has only one real root in (a,1), then f(x) has only one real root in (a,1). When f(a) < 0, the condition

f 0(a) < 0 can also be relaxed to f 0(a) 6 0.

Proof. Denote �a 2 ða;1Þ be the only real root of f 0(x), then it is easy to conclude that for x 2 ½a; �aÞ,

f 0ðxÞ < 0;
and for x > �a,
f 0ðxÞ > 0.
Since f(a) 6 0, we have f ð�aÞ < 0. By the strictly monotonicity of f(x) on ½�a;1Þ and limx!1f(x) = +1, we conclude that
f(x) has only one root in (a,1) and it is in ð�a;1Þ. h

We define the following four sets of polynomials:
p1ðaÞ ¼ p1ðaÞ ¼ a� 1;

q1ðaÞ ¼ q1ðaÞ ¼ a� 3;

p2ðaÞ ¼ p2ðaÞ ¼ a2 � 3;

q2ðaÞ ¼ q2ðaÞ ¼ a2 � 2a� 1;

p3ðaÞ ¼ a3 � 2a� 1;

q3ðaÞ ¼ a3 � 2a2 � 1;

p3ðaÞ ¼ a3 � 2a� 3;

q3ðaÞ ¼ a3 � 2a2 � 3;
and for n P 4,
pnðaÞ ¼ an � 2an�2 � 1;

qnðaÞ ¼ an � 2an�1 � 1;

pnðaÞ ¼ an � 2an�2 � 2an�3 � � � � � 2a� 3;

qnðaÞ ¼ an � 2an�1 � 2an�3 � � � � � 2a� 3.
These polynomials have a very special property: the polynomials p1(a) and p1(a) have their only root at a = 1, and all
other polynomials have only one real root in (1,1).

Lemma 1

(i) For n P 2, each of the polynomials pn(a), qn(a), pn(a) and qn(a) has only one real root in (1,1).

(ii) Denote p1, q1, �p1 and �q1 the root of p1(a), q1(a), p1(a) and q1(a), respectively, and for n P 2, denote pn, qn, �pn and �qn

the only root of pn(a), qn(a), pn(a) and qn(a) in (1,1), respectively. Then for n P 3,ffiffiffip

(ii.1) pn+1 < pn and limn!1pn ¼ 2;

(ii.2) qn+1 < qn and limn!1qn = 2;
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(ii.3) �pnþ1 > �pn and limn!1�pn ¼ 2;

(ii.4) �qnþ1 > �qn and

lim
n!1

�qn ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 11

ffiffiffi
6
p

3
p

3
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ 11
ffiffiffi
6
p

3
p ¼: 2:5241.
Proof. We give proofs for the results concerning qn(a). Similar (but simpler) proofs can be worked out for other cases.
(i) It is easy to verify that q2(a) and q3(a) have the their only real roots in (1,1) as �q2 ¼ 1þ

ffiffiffi
2
p
¼: 2:4142 and

�q3¼: 2:4556, respectively. For n P 4, denote
~qnðaÞ ¼ anþ1 � 3an þ 2an�1 � 2an�2 � aþ 3;
then we verify that
qnðaÞ ¼ ~qnðaÞ
a� 1

;

therefore, we only need to prove that ~qnðaÞ has only one real root in (1,1).
Note that
d~qnðaÞ
da

¼ ðnþ 1Þan � 3nan�1 þ 2ðn� 1Þan�2 � 2ðn� 2Þan�3 � 1;

d2~qnðaÞ
da2

¼ an�4ððnþ 1Þna3 � 3nðn� 1Þa2 þ 2ðn� 1Þðn� 2Þa� 2ðn� 2Þðn� 3ÞÞ

¼def an�4�qnðaÞ;
d�qnðaÞ

da
¼ 3ðnþ 1Þna2 � 6nðn� 1Þaþ 2ðn� 1Þðn� 2Þ.
We verify that when n P 4, d�qnðaÞ
da has the following only root in (1,1),
3nðn� 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n4 � 6n3 þ 15n2 � 12n
p

3ðnþ 1Þn ;
and
d�qnð1Þ
da

¼ �ðn� 4Þðnþ 1Þ 6 0;

�qnð1Þ ¼ �2ðn� 2Þ2 < 0;

�qnð1Þ ¼ 1.
By Proposition 1, �qnðaÞ has only one real root on (1,1). This implies that d2~qnðaÞ
da2 has only one real root on

(1,1).
Similarly, we check that
d2~qnð1Þ
da2

¼ �2ðn� 2Þ2 < 0;

d~qnð1Þ
da

¼ �2ðn� 1Þ < 0;

~qnð1Þ ¼ 0;

d~qnð1Þ
da

¼ 1;

~qnð1Þ ¼ 1.
By repeatedly revoking Proposition 1, we arrive at our conclusion that ~qnðaÞ has only one real root on (1,1).
(ii) First note that since qn(2) = �2n�1 � 1 < 0 and qn(3) = 2 · 3n�2 > 0, so actually we have that for all n P 2,
2 < �qn < 3. ð1Þ
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Obviously,
�q2 < �q3 < �q4.
For n P 4, since by definitions of �qn and ~qnðaÞ,
�qnþ1
n � 3�qn

n þ 2�qn�1
n � 2�qn�2

n � �qn þ 3 ¼ 0;
or
�qnþ1
n ¼ 3�qn

n � 2�qn�1
n þ 2�qn�2

n þ �qn � 3;
we can verify that
~qnþ1ð�qnÞ ¼ �qnþ2
n � 3�qnþ1

n þ 2�qn
n � 2�qn�1

n � �qn þ 3 ¼ �qnð3�qn
n � 2�qn�1

n þ 2�qn�2
n þ �qn � 3Þ � 3�qnþ1

n þ 2�qn
n � 2�qn�1

n � �qn þ 3

¼ ð�qn � 3Þð�qn � 1Þ < 0.
Hence
qnþ1ð�qnÞ < 0.
So necessarily, the only real root �qnþ1 of qn+1(a) is greater than �qn, i.e.,
�qnþ1 > �qn.
Denote the limit of �qn by �q, then since ~qnð�qnÞ ¼ 0, we have
ð�q3
n � 3�q2

n þ 2�q� 2Þ � �qn � 3

�qn�2
n

¼ 0. ð2Þ
When n!1, the last term tends to zero, since
�qn � 3

�qn�2
n

����
���� 6 1

�qn�3
n

þ 3

�qn�2
n

<
(1) 1

2n�3
þ 3

2n�2
.

Taking the limit of two sides of (2), we have then
�q3 � 3�q2 þ 2�q� 2 ¼ 0.
This solves �q in (2,3) as
�q ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 11

ffiffiffi
6
p

3
p

3
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ 11
ffiffiffi
6
p

3
p ¼: 2:5241. �
3. Periodicity and bounds

Consider a first order discrete-time control system with a two-level quantized feedback
xþ ¼ f ðxÞ ¼def ax� qðxÞ; ð3Þ
where the scaling factor a > 0 is a real number, the quantized feedback q(x) is defined as
qðxÞ ¼
1; x P 0:5;

0; �0:5 < x < 0:5;

�1; x 6 �0:5.

8><
>:
The following easy result is left to the readers to verify.

Proposition 2. When 0 < a 6 1, there are only three periodic points of the system (3) {0,±1/(a + 1)}, and 0 is 1-periodic

(fixed point), and ±1/(a + 1) are 2-periodic. The set {0,±1/(a + 1)} are globally attracting.

In the following, we only consider the case when a > 1.
Because of the symmetry of f(x), we first have the following result.
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Lemma 2. If x is n-periodic, then �x is n-periodic.

Lemma 3

(i) There is no periodic orbit entirely inside the interval (�1/2,1/2).

(ii) There is no periodic orbit entirely outside of the interval (�1/2,1/2).
Proof. The proof of (i) is easy and omitted here. The proof of (ii) can be worked out to be contradiction. First of all the
orbit cannot be entirely in either (�1,�1/2] or [1/2,1), because f(x) is strictly increasing on the two intervals. So if
there is such an orbit, it must contain a point x P 1/2 such that ax � 1 6 �1/2, which is only possible when a < 1. h

The polynomials introduced in the last section are important to characterize the existence of periodic orbits of the
system (3).

Note that 0 is a 1-periodic point (fixed point) of the system (3) for any a.

Theorem 1. For any n = 1,2, . . . , the system (3) has non-zero n-periodic points if pn < a 6 �qn.

Proof. By Lemma 2, if the system has an n-periodic point, we can always assume that it has a positive n-periodic point.
For n = 1, if the system has a non-zero fixed point, it lies outside of (�1/2,1/2). This is because the map f(x) = ax,

when x 2 (�1/2,1/2), having no other fixed point than 0. Suppose x P 1/2 is a fixed point, then ax � 1 = x, and x = 1/
(a � 1). x = 1/(a � 1) is both positive and greater than 1/2 if and only if
p1 ¼ 1 < a 6 3 ¼ �q1.
For n = 2, similar reasoning reveals that the system (3) has 2-periodic points if and only if there is an x 2 (0,1/2) such
that ax P 1/2 and {x,ax} constitutes a 2-periodic orbit, i.e.,
aðaxÞ � 1 ¼ a2x� 1 ¼ x
or
x ¼ 1=ða2 � 1Þ.
Therefore, the following two inequalities must hold:
1=ða2 � 1Þ < 1=2; a=ða2 � 1ÞP 1=2.
It is easy to see that this is the case if and only if
p2 ¼
ffiffiffi
3
p

< a 6 1þ
ffiffiffi
2
p
¼ �q2.
For n P 3, our proof follows two steps:

(a) when pn < a 6 qn, the following n points constitute an n-periodic orbit:
gi ¼
ai

an � 1
for i = 0,1,2, . . . ,n � 1.
(b) when qn < a 6 �qn, the following n points constitute an n-periodic orbit:
h0 ¼
an�2 þ an�3 þ � � � þ aþ 1

an � 1
;

h1 ¼
an�1 þ an�2 þ � � � þ a

an � 1
;

h2 ¼
an�1 þ an�2 þ � � � þ a2 þ 1

an � 1
;

hi ¼
an�1 þ an�2 þ � � � þ ai þ ai�2 þ � � � þ aþ 1

an � 1
for i = 3, . . . ,n � 1.
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To prove (a), firstly note that for a > 1,
1

an � 1
<

a
an � 1

< � � � < an�2

an � 1
<

an�1

an � 1
.

Secondly, when pn < a 6 qn, then
pnðaÞ ¼ an � 2an�2 � 1 > 0;

qnðaÞ ¼ an � 2an�1 � 1 6 0.
The first inequality implies
an�2

an � 1
<

1

2
;

and the second inequality implies
an�1

an � 1
P

1

2
.

That is, we have
1

an � 1
<

a
an � 1

< � � � < an�2

an � 1
<

1

2
6

an�1

an � 1
.

By the definition of f(x), it is readily verified that
f ðgiÞ ¼ giþ1
for i = 0,1, . . . ,n � 2, and
f ðgn�1Þ ¼
an

an � 1
� 1 ¼ 1

an � 1
¼ g0.
Finally, since gi 5 gj, for all i 5 j, {g0,g1, . . . ,gn�1} constitutes a periodic orbit with prime period n.
To prove (b), we can similarly note the following inequalities:
h0 < hn�1 < � � � < h2 < h1;
and when qn < a 6 �qn, then by Lemma 1 (ii.2) and (ii.3), �pn < qn < a 6 �qn. This then implies that
pnðaÞ ¼ an � 2an�2 � 2an�3 � � � � � 2a� 3 > 0;

qnðaÞ ¼ an � 2an�1 � 2an�3 � � � � � 2a� 3 6 0.
They consequently imply
h0 ¼
an�2 þ an�3 þ � � � þ aþ 1

an � 1
<

1

2
;

hn�1 ¼
an�1 þ an�3 þ � � � þ aþ 1

an � 1
P

1

2
.

That is, we have
h0 < 1=2 6 hn�1 < � � � < h2 < h1;
and by definition of f(x), it is routine to verify that
f ðhiÞ ¼ hiþ1
for i = 0,1, . . . ,n � 2, and
f ðhn�1Þ ¼ h0.
Finally, since hi 5 hj, for all i 5 j, {h0,h1, . . . ,hn�1} constitutes a periodic orbit with prime period n.
We have noted in the proof that 1 < a 6 3 and

ffiffiffi
3
p

< a 6 1þ
ffiffiffi
2
p

are actually necessary and sufficient conditions for
the existence of non-zero 1-periodic and 2-periodic points, respectively. h
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3.1. Upper bounds

For a given positive integer n P 2, by an ordered set of n ‘‘quantized’’ parameters, we mean the set {h0,h1, . . . ,hn�1},
in which, hi 2 {�1,0,1}, i = 0,1, . . . ,n � 1. An ordered set of polynomials with ‘‘quantized’’ coefficients Pfh0 ;h1 ;...;hn�1g
corresponding to a given ordered set of ‘‘quantized’’ parameters {h0,h1, . . . ,hn�1} is defined as follows:
P iðaÞ P iðaÞ ¼
Xn�1

j¼0

hiþjak�j�1

����� ; i ¼ 0; 1; . . . ; n� 1

( )
; ð4Þ
where hi+j = h(i+j)mod(n).
The ordered set of ‘‘quantized’’ parameters {h0,h1, . . . ,hn�1} is called shift-definite at a if, denoting the leading coef-

ficient of Pi(a) by �hi, then
�hiP iðaÞ
an�1

P 1=2; when �hi ¼ hi;

0 <
�hiP iðaÞ
an�1

< 1=2; when �hi 6¼ hi ¼ 0;

8<
:

for all P iðaÞ 2 Pfh0 ;h1 ;...;hn�1g, i = 0,1, . . . ,n � 1.

Theorem 2

(i) A point x0 2 R is a periodic point with period n if and only if there is a set of n ‘‘quantized’’ parameters

{h0,h1, . . . ,hn�1}, hi 2 {�1,0,1}, i = 0,1, . . . , n � 1, which is shift-definite, such that
x0 ¼
1

an � 1

Xn�1

i¼0

an�i�1hi. ð5Þ
(ii) A point x0 2 R is an n-periodic point (that is, n is the prime period) if and only if n is the smallest positive integer such

that (i) holds.
Proof. (i) (Necessity) For any point x0 2 R, if it is a periodic point with period n, then, denoting xi = fi(x0), we have
x0 ¼ xn ¼ anx0 �
Xn�1

i¼0

an�i�1qðxiÞ;
and hence
x0 ¼
1

an � 1

Xn�1

i¼0

an�i�1qðxiÞ.
Clearly, x0 is in the form of (5) for hi = q(xi), i = 0,1, . . . ,n � 1. Furthermore, if x0 is a periodic point with period n, then
it is easily verified that xk, k = 0,1, . . . ,n � 1, also satisfies the following equalities:
xk ¼ f kðx0Þ ¼
1

an � 1

Xn�1

i¼0

an�i�1qðxkþiÞ
From the above n equalities and the fact that xk+i = x(k+i)mod(n), we conclude that this set of parameters is shift-definite
at a.

(Sufficiency) When the conditions in the theorem are satisfied by some point x0, we have, first of all, from the
definition of shift-definiteness, we can verify directly that
xk ¼ f kðx0Þ ¼
1

an � 1

Xn�1

i¼0

an�i�1hiþk .
In particular,
xn ¼ f nðx0Þ ¼
1

an � 1

Xn�1

i¼0

an�i�1hiþn ¼ x0.
(ii) The proof is direct. h
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Theorem 3. a 6 �qn is necessary for having an n-periodic point.

Proof. To show this, let us assume that there is a set of n quantized parameters {h0,h1, . . . ,hn�1}, hi 2 {�1,0,1},
i = 0,1, . . . ,n � 1, which is shift-definite, such that
xj ¼
1

an � 1

Xn�1

i¼0

an�i�1hiþj
for j = 0,1, . . . ,n � 1, are n-periodic points. Obviously, there is at least one xj outside of (�1/2,1/2). Without loss of
generality,
h0x0 ¼
1

an � 1

Xn�1

i¼0

an�i�1hih0 P
1

2
;

and it is the smallest among jxjj’s that are greater or equal to 1/2.
We claim that jh0j = 1, because jx0jP 1/2 and {h0,h1, . . . ,hn�1}, hi 2 {�1,0,1}, i = 0,1, . . . ,n � 1 is shift-definite.
We also claim that h1 = 0. This is because jx0jP 1/2 and jx0j is the minimal jxij’s that are greater or equal to 1/2.

This implies that jx1j = jax0 � sgn(x0)j < 1/2. Also by the shift-definiteness of {h0,h1, . . . ,hn�1}, hi 2 {�1,0,1},
i = 0,1, . . . ,n � 1, we know that h1 = 0.

So we have
h0x0 ¼
an�1 þ h0h2an�3 þ � � � þ h0hn�1

an � 1
;

and therefore,
an�1 þ an�3 þ � � � þ aþ 1

an � 1
P

an�1 þ h0h2an�3 þ � � � þ h0hn�1

an � 1
¼ h0x0 P

1

2
.

From here, we obtain that a 6 �qn. h
3.2. Remarks on lower bounds

As can been seen that there are also lower bounds. However, they are more difficult to find.
We can easily check that a > p1, a > p2, a > p3, a > p4 and a > p5 are also necessary for the system to have 1-, 2-, 3-, 4-

and 5-periodic points, respectively. However, in general, the lower bound a > pn is not necessary for the existence of n-
periodic points.

As a matter of fact, for all 1 < a 6 �q6, there is a 6-periodic orbit. For 1 < a 6 p6, we can verify that an orbit starting
from 1/(a3 + 1) is
1

a3 þ 1
;

a
a3 þ 1

;
a2

a3 þ 1
;� 1

a3 þ 1
;� a

a3 þ 1
;� a2

a3 þ 1

� �
.

Note that when 1 < a 6 p6,
1

a3 þ 1
<

a
a3 þ 1

<
1

2
<

a2

a3 þ 1
.

In general, we can define the following two more sets of polynomials for m P 3:
pe
mðaÞ ¼ am � 2am�2 þ 1;

qe
mðaÞ ¼ am � 2am�1 þ 1.
It is also easy to prove that both pe
mðaÞ and qe

mðaÞ have a unique real root in (1,1), denoted by pe
m, and �qe

m respec-
tively, and

(i) pe
m�p "

ffiffiffi
2
p

; (ii) �qe
m�p " 2.

When pe < a 6 �qe
m, then there exists 2m-periodic points:
1

am þ 1
;

a
am þ 1

; . . . ;
am�1

am þ 1
;� 1

am þ 1
;� a

am þ 1
; . . . ;� am�1

am þ 1

� �
.

It is easily verified that p2m < �qe
m, so we know that when pe

m < a 6 �q2m, there exist 2m-periodic points.
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Another example is a 13th order periodic point given by
a11 � a7 þ a4 � a
a13 � 1
which exists for a > 1.1593.
4. Conclusion

We have investigated the periodicity of a scalar system introduced by a 2-level quantized feedback. It is found that
there are lower and upper bounds of the scaling factor such that a periodic point of certain order exists. The exact upper
bounds are characterized by using roots of interesting groups of polynomials. It is seen that the lower bounds are all
smaller than

ffiffiffi
2
p

, and their exact characterization is under current investigation.
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