
Chaos, Solitons and Fractals 19 (2004) 581–595

www.elsevier.com/locate/chaos
Periodic orbits arising from Delta-modulated feedback control

Xiaohua Xia a,*, Rudong Gai a,b,1, Guanrong Chen c,2

a Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
b Department of Basic Science, Liaoning Technical University, Fuxin 123000, China

c Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR

Accepted 24 March 2003
Abstract

A Delta-modulated feedback gives rise to a system of the form xþ ¼ f ðxÞ ¼ ax� D sgnðaxÞ. In this paper, we will

determine the a values, 1 < jaj < 2, for which periodic orbits of each order exist. Polynomials with ‘‘sign’’ coefficients

are introduced, and their properties are investigated. With the help of the roots of these polynomials, we characterize

the minimal value for jaj such that a periodic point of a certain order first appears. Our results show that even though

the topological properties of the tent map and the map f are different, the mechanisms of giving rise to periodic orbits

via parameter variations are exactly the same for �2 < a < �1, and only ‘‘slightly’’ different for 1 < a < 2.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Delta-modulation is a concept from telecommunication [11]. Delta-modulated feedback has been applied to the

transmitting power regulation of a mobile unit in the Direct Sequence Code Division Multiple Access (DS-CDMA)

cellular network [1]. An advantage of such a control method is that only one bit of datum is necessary for implementing

the controller. This is the standard in IS-95 [11] for transmitting power control.

Delta-modulated control is bounded, bang-bang, and also a special kind of quantized control, which are topics of

longstanding interests in the control community [2,3,5,8]. Delta-modulated feedback is a switching between two values.

The resulting switching system is a special kind of piecewise linear systems [10,14,15].

The simplicity and speciality of Delta-modulation make it an attractive choice for control practitioners. Yet, the rich

mathematical contents of this seemingly simple Delta-modulated control have yet to be discovered.

A Delta-modulated feedback of a one-dimensional discrete-time control system gives rise to a dynamical system

of the following form [6,16]:
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xþ ¼ f ðxÞ ¼def ax� D sgnðaxÞ; ð1Þ
where xþ denotes the system state at the next discrete-time, a is a real number, and sgnðxÞ is defined as
sgnðxÞ ¼ 1; when xP 0;
�1; when x < 0:
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We have shown in [16] that a dynamical system of such a simple nature exhibits very complex behaviors: (1) when

jaj < 1, there is a minimal global attractor which consists of only two points. The two points form either one 2-periodic

orbit or two 1-periodic orbits (fixed points); (2) when 16 jaj < 2, all the points in a maximal stabilizable region are

driven to a closed interval ½�D;D�, and f is invariant on ½�D;D�; and (3) when jajP 2, the maximal stabilizable set is a

Cantor set, the Cantor set is a repeller of the system, and the system is chaotic on the Cantor set. In the development of

the above results, we have also shown that in the third case, there are periodic points of any positive period, and in the

second case and when a > 0, there are two 2-periodic points but no fixed points in the interval ½�D;D�.
This last fact is interesting, because it is a departure from what the famous Sarkovskii theorem [13] claims for

continuous dynamical systems. In this paper, we will vividly illustrate the conditions for the existence of all other

periodic orbits. We will determine the a values for which periodic orbits of each order exist in the interval ½�D;D�.
When 1 < a < 2, the results are exactly the same for the corresponding results obtained in [7] (see also [4,12]) for the

tent map, especially if we consider our map f on a bigger interval ½�D=ðjaj � 1Þ;D=ðjaj � 1Þ�. (The two fixed points of f
are �D=ðjaj � 1Þ.) We notice that even though the topological properties of the tent map and the map f are funda-

mentally different, the mechanisms of giving rise to periodic orbits via parameters are strikingly similar. Our approach is

based on some interesting properties of the new map. We will firstly look at three groups of polynomials with ‘‘sign’’

coefficients in Section 2. These polynomials will be used to present results, in Section 3, for the case of 1 < a < 2, of

which we call the system (1) of type-I, and in Section 4, for the case of �2 < a < �1, of which we call the system (1) of

type-II. Section 5 of the paper gives some concluding remarks.
2. Polynomials with ‘‘sign’’ coefficients

2.1. Definitions

For a given positive integer kP 2, by an ordered set of k ‘‘sign’’ parameters, we mean the set fh0; h1; . . . ; hk�1g, in
which, hi 2 f�1; 1g, i ¼ 0; 1; . . . ; k � 1. An ordered set of polynomials with ‘‘sign’’ coefficients Pfh0 ;h1 ;...;hk�1g corre-

sponding to a given ordered set of ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g is defined as follows:
PiðaÞjPiðaÞ
(

¼
Xk�1

j¼0

hiþjak�j�1; i ¼ 0; 1; . . . ; k � 1

)
; ð2Þ
where hiþj ¼ hðiþjÞmodðkÞ.

The ordered set of ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g is called (strictly) shift-definite at a if
hiPiðaÞP ð>Þ0;
for all PiðaÞ 2 Pfh0 ;h1 ;...;hk�1g, i ¼ 0; 1; . . . ; k � 1. It is called shift-languished at a if, for i ¼ 0; 1; . . . ; k � 1,
hiðPiðaÞ � Piþ1ðaÞÞ > 0;
in which we let PkðaÞ ¼ P0ðaÞ.

Proposition 1. For any given positive integer k > 1, an ordered set of ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g in which there
are at least two different elements is shift-languished at any a > 1.

Proof. Denote the ordered set of polynomials corresponding to fh0; h1; . . . ; hk�1g as
Pfh0 ;h1 ;...;hk�1g ¼ fP0ðaÞ; P1ðaÞ; . . . ; Pk�1ðaÞg:
We also denote the following polynomial:
PkðaÞ ¼ ak�1 þ ak�2 þ � � � þ aþ 1: ð3Þ
It is easily verified that the following equality
PjðaÞ ¼ aðPj�1ðaÞ � hj�1ak�1Þ þ hj�1 ð4Þ
holds true for every 0 < j6 k. Hence, we have, for j ¼ 1; 2; . . . ; k,
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hj�1ðPj�1ðaÞ � PjðaÞÞ ¼ hj�1Pj�1ðaÞ � hj�1aðPj�1ðaÞ � hj�1ak�1Þ � 1 ¼ �hj�1ða� 1ÞPj�1ðaÞ þ ak � 1

¼ ða� 1ÞðPkðaÞ � hj�1Pj�1ðaÞÞ > 0: �
Define, on ð1;1Þ, a function of a, by
Pfh0 ;...;hk�1gðaÞ ¼ minfhiPiðaÞjPi 2 Pfh0 ;...;hk�1gg ð5Þ
and we call it the minimal value function w.r.t. fh0; h1; . . . ; hk�1g. If there is a PiðaÞ 2 Pfh0 ;h1 ;...;hk�1g such that
Pfh0 ;h1 ;...;hk�1gðaÞ ¼ hiPiðaÞ;
and for all j 6¼ i, PjðaÞ 2 Pfh0 ;h1 ;...;hk�1g,
Pfh0 ;h1 ;...;hk�1gðaÞ < hjPjðaÞ;
then we call the minimal value function is strictly minimal at a. Implied by these definitions are the following results.

Lemma 1. An ordered set of k ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g is shift-definite at a if and only if its minimal value
function Pfh0 ;h1 ;...;hk�1gðaÞP 0.

Lemma 2. For every positive integer kP 2, the minimal value function Pfh0 ;h1 ;...;hk�1gðaÞ is continuous on ð1;1Þ.

Proof. For a given point a0 2 ð1;1Þ, if there exists a unique polynomial PiðaÞ 2 Pfh0 ;h1 ;...;hk�1g such that

Pfh0 ;h1 ;...;hk�1gða0Þ ¼ hiPiða0Þ, i.e., hiPiða0Þ < hjPjða0Þ for all j 6¼ i, then by the continuity of a polynomial function, there

must exist a neighborhood of the point a0, denoted by Dða0; dÞ, such that hiPiðaÞ < hjPjðaÞ for a 2 Dða0; dÞ. By the

definition of Pfh0 ;h1 ;...;hk�1gðaÞ, one gets Pfh0 ;h1 ;...;hk�1gðaÞ ¼ hiPiðaÞ for all a 2 Dða0; dÞ. Therefore the point a is a continuous

point of Pfh0 ;h1 ;...;hk�1gðaÞ.
If there exist l (>1) polynomials hik Pik ðaÞ such that Pfh0 ;h1 ;...;hk�1gða0Þ ¼ hik Pik ða0Þ, k ¼ 1; 2; . . . ; l, then one can prove,

by basic properties of polynomials, that there must exist a neighborhood of the point a0, denoted by ða0 � d0; a0 þ d0Þ,
such that hiPiðaÞ 6¼ hjPjðaÞ for all a 2 ða0 � d0; a0 þ d0Þ and all i 6¼ j, i; j 2 fik jk ¼ 1; 2; . . . ; lg. This implies that there are

two polynomials hiPiðaÞ and hjPjðaÞ which satisfy the inequalities hiPiðaÞ < hsPsðaÞ when a 2 ða0 � d0; a0Þ and

hjPjðaÞ < hsPsðaÞ when a 2 ða0; a0 þ d0Þ for all s 2 fik jk ¼ 1; 2; . . . ; lg, s 6¼ i; j. Hence, we get
Pfh0 ;h1 ;...;hk�1gðaÞ ¼
hiPiðaÞ; a 2 ða0 � d0; a0�;
hjPjðaÞ; a 2 ½a0; a0 þ d0Þ:

�

We see that a0 is also a continuous point. h

The above proof shows that Pfh0 ;h1 ;...;hk�1gðaÞ is a polynomial or a piecewise polynomial, since the number of inter-

section points of k polynomials is finite.

We will also need another concept in what follows. An ordered set of k ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g is said to

be in a primary ordering at a if
Pfh0 ;h1 ;...;hk�1gðaÞ ¼ h0P0ðaÞ:
We prove a useful lemma before we introduce the three groups of polynomials.

Lemma 3. Suppose for all a 2 ð1;1Þ, for an ordered set of k ‘‘sign’’ parameters fh0; h1; . . . ; hk�1g, its (strictly) minimal
value function is given by the polynomial
PðaÞ ¼ h0ak�1 þ h1ak�2 þ � � � þ hk�2aþ hk�1:
Then, for all a 2 ð1;1Þ, the polynomial defined by
P �ðaÞ ¼ ða� 1ÞPða2Þ
is the (strictly) minimal value function w.r.t. the ordered set of 2k ‘‘sign’’ parameters given by the coefficients of P �ðaÞ, with
decreasing order of powers.
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Proof. Denote the set of coefficients of P �ðaÞ, with decreasing order of powers, as fh�0; h
�
1; . . . ; h

�
2k�1g. Then by the

definition of P �ðaÞ, we have, for j ¼ 0; 1; . . . ; k � 1, h�2j ¼ hj, h
�
2jþ1 ¼ �hj. Denote
Pfh0 ;h1 ;...;hk�1g ¼ fP0ðaÞ; P1ðaÞ; . . . ; Pk�1ðaÞg;
P�

fh�
0
;h�
1
;...;h�

2k�1
g ¼ fP �

0 ðaÞ; P �
1 ðaÞ; . . . ; P �

2k�1ðaÞg:
Then it is easily verified that, for j ¼ 0; 1; . . . ; k � 1,
P �
2jðaÞ ¼ ða� 1ÞPjða2Þ;

P �
2jþ1ðaÞ ¼ �aPjða2Þ þ Pjþ1ða2Þ:
To see that P �ðaÞ ¼ h0P �
0 ðaÞ is (strictly) minimal for a > 1, firstly we have
h�2jP
�
2jðaÞ � h�0P

�
0 ðaÞ ¼ hjða� 1ÞPjða2Þ � h0ða� 1ÞP0ða2Þ ¼ ða� 1ÞðhjPjða2Þ � h0P0ða2ÞÞP 0 ðor > 0Þ:
Similarly,
h�2jþ1P
�
2jþ1ðaÞ � h�0P

�
0 ðaÞ ¼ �hjð�aPjða2Þ þ Pjþ1ða2ÞÞ � h0ða� 1ÞP0ða2Þ

¼ ða� 1ÞðhjPjða2Þ � h0P0ða2ÞÞ þ hjðPjða2Þ � Pjþ1ða2ÞÞP 0 ðor > 0Þ:
In the last step, we have used the fact that fh0; h1; . . . ; hk�1g is shift-languished. Hence, we have proved that P �ðaÞ is
(strictly) minimal. h

2.2. Polynomials P

Lemma 4. The system of polynomials defined as P2ðaÞ ¼ a� 1, and for positive integers mP 1,
P2mþ1ðaÞ ¼ ða2m � 1ÞP2mðaÞ ð6Þ
have the following properties:

i(i) For mP 1,
P2mþ1ðaÞ ¼ ða� 1ÞP2mða2Þ: ð7Þ
(ii) For every mP 1, denote the ordered set of parameters corresponding to the coefficients, with decreasing order of pow-
ers, of the polynomials P2mðaÞ as fh00; h

0
1; . . . ; h

0
2m�1g. Then this ordered set of parameters is in a primary ordering and

shift-definite at any a 2 ½1;1Þ. The polynomial P2mðaÞ itself is the minimal value function on the interval ð1;1Þ, and
it is strictly minimal at all a 2 ð1;1Þ.

Proof

i(i) By the definition (6), denoting �aa ¼ a2, then we have
P2mþ1ðaÞ ¼ ða2m � 1ÞP2mðaÞ ¼
Ym
i¼0

ða2i � 1Þ ¼ ða� 1Þ
Ym�1

i¼0

ð�aa2i � 1Þ ¼ ða� 1ÞP2mða2Þ:
(ii) We prove by mathematical induction that, at a 2 ½1;1Þ, the ordered set of parameters corresponding to the coef-

ficients of P2mðaÞ with decreasing order of powers, is shift-definite (strictly at a 2 ð1;1Þ), and P2mðaÞ is the (strictly
at a 2 ð1;1Þ) minimal value function.

This is easily verified for m ¼ 1. Assume this is true for some m > 1. Then from (7) and Lemma 3, we can verify all

the assertions for P2mþ1ðaÞ. h

2.3. Polynomials Q

This group of polynomials were studied in [7].

Lemma 5. The system of polynomials defined as Q3ðaÞ ¼ a2 � a� 1, and for k > 1,
Q2kþ3ðaÞ ¼ a2Q2kþ1ðaÞ þ a� 1 ð8Þ
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have the following properties: for each kP 1, the coefficients of the polynomial Q2kþ1ðaÞ with decreasing order of powers
are f1;�1;�1; 1;�1; . . . ; 1;�1g. This ordered set of 2k þ 1 parameters is in a primary ordering, and
Pf1;�1;�1;1;�1;...;1;�1gðaÞ ¼ Q2kþ1ðaÞ; ð9Þ
and it is also strictly minimal at all a 2 ð1;1Þ.

Proof. We need only to show (9).

Let fh0; h1; . . . ; h2kg ¼ f1;�1;�1; 1;�1; . . . ; 1;�1g be the coefficients of Q2kþ1ðaÞ, with decreasing order of powers,

and denote
Pfh0 ;h1 ;...;h2kg ¼ fP0ðaÞ; P1ðaÞ; . . . ; P2kðaÞg:
According to (2), we have
P0ðaÞ ¼ Q2kþ1ðaÞ ¼ a2k � a2k�1 þ
X2k�2

i¼0

ð�1Þiþ1ai;

P1ðaÞ ¼ �a2k � a2k�1 þ
X2k�2

i¼1

ð�1Þiþ1ai þ 1:
We can easily verify that
h1P1ðaÞ � P0ðaÞ ¼ 2a2k�1 > 0:
Generally, we have, for lP 1, that
P2lðaÞ ¼
X2k
i¼2l

ð�1Þiþ1ai þ a2l�1 � a2l�2 � a2l�3 þ
X2l�4

i¼0

ð�1Þiai;

P2lþ1ðaÞ ¼
X2k
i¼2lþ1

ð�1Þiai þ a2l � a2l�1 � a2l�2 þ
X2l�3

i¼0

ð�1Þiþ1ai;
and
h2lP2lðaÞ � P0ðaÞ ¼
X2k�2

i¼2l�2

ð�1Þiai > 0;

h2lþ1P2lþ1ðaÞ � P0ðaÞ ¼
X2k�2

i¼2l�1

ð�1Þiai > 0:
Therefore, (9) holds true at all a in the interval ð1;1Þ. h

Proposition 2

ii(i) For every kP 1, the polynomial Q2kþ1ðaÞ has a unique positive real root in ð1;1Þ.
i(ii) Denote the root of Q2kþ1ðaÞ as a2kþ1 for k ¼ 1; 2; . . . Then

ffiffiffi
2

p
< a2kþ3 < a2kþ1.

(iii) limk!þ1 a2kþ1 ¼
ffiffiffi
2

p
.

Proof

ii(i) For the first polynomial Q3 ¼ a2 � a� 1, one can directly verify that the only root in ð1;1Þ is a3 ¼ ð1þ
ffiffiffi
5

p
Þ=2.

From the definition of Q2kþ3ðaÞ, we calculate that
Q2kþ3ðaÞ ¼
a2kþ3 � 2a2k�1 � 1

aþ 1
:

We only need to prove that the polynomial defined by Q2kþ3ðaÞ ¼ a2kþ3 � 2a2kþ1 � 1 has a unique root in ð1;1Þ.
Since
dQ2kþ3ðaÞ
da

¼ a2kðð2k þ 3Þa2 � 2ð2k þ 1ÞÞ;
we see that dQ2kþ3ðaÞ=da is zero in ð1;1Þ only when a ¼ a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k þ 1Þ=ð2k þ 3Þ

p
, and
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dQ2kþ3ðaÞ
da

< 0; when 16 a < a�;

dQ2kþ3ðaÞ
da > 0; when a > a�:

8><
>:
Therefore, we have, for a 2 ð1; a��,
Q2kþ3ðaÞ < Q2kþ3ð1Þ ¼ �2:
Q2kþ3ðaÞ is strictly monotonically increasing in the interval ½a�;1Þ. Since Q2kþ3ð2Þ ¼ 3� 22kþ1 � 1 > 0, we know

that Q2kþ3ðaÞ has a unique root in ða�;1Þ.
i(ii) From the above proof, we see that Q2kþ3ð

ffiffiffi
2

p
Þ ¼ �1, and we can actually conclude that a2kþ3 >

ffiffiffi
2

p
. To prove

a2kþ3 < a2kþ1, we note that

Q2kþ3ðaÞ ¼ a2Q2kþ1ðaÞ þ a� 1;

so that

Q2kþ3ða2kþ1Þ ¼ a2kþ1 � 1 > 0;

therefore

a2kþ3 < a2kþ1:

(iii) The conclusion in (ii) guarantees the existence of a limit, denoted by a1, when k tends to infinity, of the sequence

fa2kþ1g, and a1 P
ffiffiffi
2

p
. Note that a2kþ1 is also the unique root of Q2kþ1ðaÞ, therefore we have

a2kþ1
2kþ1 � 2a2k�1

2kþ1 � 1 ¼ 0;

a22kþ1 � 2� 1

a2k�1
2kþ1

¼ 0;

a21 � 2� lim
k!1

1

a2k�1
2kþ1

¼ 0:

Since a1 P
ffiffiffi
2

p
, the third term of the left hand side of the last equation is zero, thus we have a21 � 2 ¼ 0. That is,

a1 ¼
ffiffiffi
2

p
. h

Lemma 6. When aP a2kþ1, the ordered set of parameters consisting of coefficients of Q2kþ1ðaÞ, with decreasing power
order, is shift-definite.

Lemma 7. Define, for kP 1, mP 1,
ð2kþ1Þ2mðaÞ ¼ Q2kþ1ða2
mÞP2mðaÞ:
Then

ii(i) Qð2kþ1Þ2mþ1ðaÞ ¼ ða� 1ÞQð2kþ1Þ2mða2Þ.
i(ii) Qð2kþ1Þ2mðaÞ has a unique root að2kþ1Þ2m in the interval ð1;1Þ, and að2kþ1Þ2m ¼ ða2kþ1Þ1=2

m

.
(iii) Qð2kþ1Þ2n ðaÞ is the strictly minimal value function, w.r.t. the ordered set of parameters consisting of coefficients of

Qð2kþ1Þ2n ðaÞ, with decreasing order powers. When aP að2kþ1Þ2n , this ordered set of parameters is shift-definite.

Proof. (i) Can be directly verified. (ii) Is implied by Proposition 2(i). (iii) Is proved by using mathematical induction on

n, with the help of Proposition 2(i), Lemma 3 and Lemma 6. h

2.4. Polynomials H

Lemma 8. The system of polynomials defined as H2ðaÞ ¼ P2ðaÞ, and for kP 1, as
2kþ2ðaÞ ¼ a2H2kðaÞ �H2ðaÞ; ð10Þ
have the following properties:
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ii(i) For all k > 1,

H2kðaÞ ¼ aQ2k�1ðaÞ þ 1: ð11Þ

i(ii) For every k > 2, the polynomial H2kðaÞ has a unique real root in the interval ð1;1Þ.
(iii) The sequence of real roots of polynomials H2kðaÞ in the interval ð1;1Þ, denoted by �aa2k , is strictly monotonically in-

creasing when kP 3. In particular, �aa6 ¼ a6, and limk!þ1 �aa2k ¼
ffiffiffi
2

p
.

Proof

ii(i) For k ¼ 2, by definition (10) and with simple calculation, it is easily verified that

H4ðaÞ ¼ a2H2ðaÞ �H2ðaÞ ¼ aQ3ðaÞ þ 1:

Assume (11) holds true for some k > 2. For k þ 1, we have

H2kþ2ðaÞ ¼ a2H2kðaÞ �H2ðaÞ ¼ a2ðaQ2k�1ðaÞ þ 1Þ �H2ðaÞ ¼ aða2Q2k�1ðaÞ þ a� 1Þ þ 1 ¼ aQ2kþ1ðaÞ þ 1:

i(ii) By definition, we can obtain that

H2kðaÞ ¼ ða� 1Þ a2ðk�1Þ

 
�
Xk�2

i¼0

a2i
!

¼ a2k � 2a2ðk�1Þ þ 1

aþ 1
:

From this, we see that H2kðaÞ has the same root in ð1;1Þ as the polynomial defined by H2kðaÞ ¼ a2k � 2a2ðk�1Þ þ 1.

Note that
dH2kðaÞ
da

¼ a2k�3ð2ka2 � 4ðk � 1ÞÞ;
which is zero only when a ¼ a�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 1=kÞ

p
, and
dH2kðaÞ
da

< 0; when 1 < a < a��;

dH2kðaÞ
da > 0; when a > a��:

8><
>:

Therefore, we have, for a 2 ð1; a���,
H2kðaÞ < H2kð1Þ ¼ 0:
H2kðaÞ is monotonically increasing in the interval ½a��;1Þ. Since H2kð
ffiffiffi
2

p
Þ ¼ 1, we know that H2kðaÞ has a unique

root in ða��;1Þ. Note that when kP 3, a�� P
ffiffiffiffiffiffiffiffi
4=3

p
. So, from the above from the above proof, we have
ffiffiffiffiffiffiffiffi

4=3
p

< �aa2k <
ffiffiffi
2

p
: ð12Þ
(iii) Note that

H2kþ2ð�aa2kÞ ¼ �aa22kH2kð�aa2kÞ �H2ð�aa2kÞ < 0:

This shows that the �aa2k < �aa2kþ2 when kP 3. From (12), the limit, denoted as �aa1, of the sequence f�aa2kg exists and

satisfies
ffiffiffiffiffiffiffiffi
4=3

p
P �aa1 6

ffiffiffi
2

p
.

Therefore, we have
�aa2k2k � 2�aa2k2k�2 þ 1 ¼ 0;

�aa22k � 2� 1

�aa2k�2
2k

¼ 0;

�aa21 � 2� lim
k!1

1

�aa2k�2
2k

¼ 0:
Since �aa1 P
ffiffiffiffiffiffiffiffi
4=3

p
> 1, the third term of the left hand side of the last equation is zero, thus we have �aa21 � 2 ¼ 0.

That is, �aa1 ¼
ffiffiffi
2

p
. h
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Note that
p

x

x

x

s

s

x

1ffiffiffi
a� 1

H2kþ2ð
ffiffiffi
a

p
Þ ¼ ak � ak�1 � � � � � a2 � a� 1:
The group of polynomials at the right-side of the above equation were studied in [9].
3. Periodic orbits of type-I systems

In this section, we study periodic points of systems of type-I.

3.1. Relationship of periodic points and ‘‘sign’’ polynomials

Theorem 1

i(i) A point x0 2 R is a periodic point with period n if and only if there is a set of n ‘‘sign’’ parameters fh0; h1; . . . ; hn�1g,
hi 2 f�1; 1g, i ¼ 0; 1; . . . ; n� 1, which is shift-definite, such that

x0 ¼
D

an � 1

Xn�1

i¼0

an�i�1hi: ð13Þ

(ii) A point x0 2 R is an n-periodic point (that is, n is the prime period) if and only if n is the smallest positive integer such
that (i) holds.

Proof (Necessity). (i) For any point x0 2 R, if it is a periodic point with period n, then, denoting xi ¼ f iðx0Þ, we
have
0 ¼ xn ¼ anx0 � D
Xn�1

i¼0

an�i�1sgnðxiÞ;
and hence
0 ¼
D

an � 1

Xn�1

i¼0

an�i�1 sgnðxiÞ:
Clearly, x0 is in the form of (13) for hi ¼ sgnðxiÞ, i ¼ 0; 1; . . . ; n� 1. Furthermore, if x0 is a periodic point with period n,
then it is easily verified that xk , k ¼ 0; 1; . . . ; n� 1, also satisfies the following equalities:
k ¼ f kðx0Þ ¼
D

an � 1

Xn�1

i¼0

an�i�1 sgnðxkþiÞ:
From the above n equalities and the fact that D=ðan � 1Þ > 0, we have
gnðxkÞ ¼ sgn
Xn�1

i¼0

an�i�1 sgnðxkþiÞ
 !
Note that xkþi ¼ xkþimodðnÞ, therefore this set of parameters is shift-definite at a.
(Sufficiency) When the conditions in the theorem are satisfied by some point x0, we have, first of all, from the

definition of shift-definiteness,
gnðx0Þ ¼ sgn
Xn�1

i¼0

an�i�1hi

 !
¼ h0:
Note also that
1 ¼ f 1ðx0Þ ¼
Da

an � 1

Xn�1

i¼0

an�i�1hi � D sgnðx0Þ ¼
D

an � 1

Xn�1

i¼0

an�ihi � Dh0 ¼
D

an � 1

Xn�1

i¼0

an�i�1hiþ1:
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So, we have
sgnðx1Þ ¼ sgn
Xn�1

i¼0

an�i�1hiþ1

 !
¼ h1:
Similar to the above discussion, we can get
xk ¼ f kðx0Þ ¼
D

an � 1

Xn�1

i¼0

an�i�1hiþk ;
and
sgnðxkÞ ¼ sgn
Xn�1

i¼0

an�i�1hiþk

 !
¼ hk :
In particular,
xn ¼ f nðx0Þ ¼
D

an � 1

Xn�1

i¼0

an�i�1hiþn ¼ x0:
(ii) The proof is direct. h

Remark 1. The two sets of parameters, ð1; 1; . . . ; 1Þ and ð�1;�1; . . . ;�1Þ, are shift-definite at any a > 1, therefore,

according to Theorem 1, they give rise to periodic points. By invoking (13), we see that they give rise to two fixed points,

D=ða� 1Þ and �D=ða� 1Þ, respectively. From [16], we know that these two fixed points are the only periodic points

outside ½�D;D�. Therefore, any shift-definite set of parameters with at least two different signs is associated with a

periodic point in ½�D;D�. Conversely, any periodic point in ½�D;D� is associated with a shift-definite set of parameters

with at least two different signs.

Theorem 2. If the minimal value function w.r.t. a shift-definite set of ‘‘sign’’ parameters fh0; h1; . . . ; hn�1g is strictly
minimal at a, then the periodic point given by (13) has a prime period n.

Proof. Without loss of generality, assume that fh0; h1; . . . ; hn�1g is in primary ordering. Denote the ordered set of

polynomials corresponding to fh0; h1; . . . ; hn�1g as
Pfh0 ;h1 ;...;hk�1g ¼ fP0ðaÞ; P1ðaÞ; . . . ; Pn�1ðaÞg:
Then, for i ¼ 1; 2; . . . ; n� 1,
Pfh0 ;h1 ;...;hn�1gðaÞ ¼ h0P0ðaÞ < hiPiðaÞ: ð14Þ
The point x0 as defined in (13) is periodic with a period n, according to Theorem 1(i).

Denote the periodic orbit starting from x0 as fx0; x1; . . . ; xn�1g. The following the proof of Theorem 1, we have
xi ¼
D

an � 1
PiðaÞ:
Obviously, x0 cannot be a fixed point. We also see that x0 do not have a period k, 1 < k < n. Otherwise, we have

xk ¼ x0, that is,
D
an � 1

PkðaÞ ¼
D

an � 1
P0ðaÞ;
which implies
PkðaÞ ¼ P0ðaÞ:
Since fh0; h1; . . . ; hn�1g is shift-definite, PkðaÞ and P0ðaÞ have the same sign as their leading coefficients. That is, hk ¼ h0.
We then have
hkPkðaÞ ¼ h0P0ðaÞ;
contradicting (14). h
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3.2. 2m-periodic points

We are ready to present our results for three distinct cases: 2m-periodic points, odd order periodic points and other

even order periodic points.

Theorem 3. If a > 1, then there exists a 2m-periodic point in ½�D;D� for all m > 0.

Proof. From Lemma 4(ii) and Theorem 1(i), the point defined by
x2m ¼ D
a2m � 1

P2mðaÞ
with mP 1, is a periodic point in ½�D;D� with period 2m. Lemma 4(ii) and Theorem 2 together imply that x2m is a 2m-

periodic point. h

3.3. Odd-order periodic points

Now, we turn to odd periods. We need three propositions.

Proposition 3. If there is a periodic point with an odd period 2k þ 1P 3 for system (1) with some a� > 1, then there is an
a��, 1 < a�� 6 a�, such that 0 is a periodic point with period 2k þ 1 of system (1) with a��.

Proof. From Theorem 1 and Lemma 1, there is an ordered set of 2k þ 1 ‘‘sign’’ parameters fh0; h1; . . . ; h2kg such that its

minimal value function is non-negative at a�, i.e.,
Pfh0 ;h1 ;...;h2kgða
�ÞP 0:
Since 2k þ 1P 3, there are at least two elements with different signs in fh0; h1; . . . ; h2kg, as explained in Remark 1.

Therefore, from the definition of a minimal value function,
Pfh0 ;h1 ;...;h2kgð1Þ < 0:
From Lemma 2, there is an a��, 1 < a�� 6 a�, such that
Pfh0 ;h1 ;...;h2kgða
��Þ ¼ 0:
This means, from Lemma 1, that fh0; h1; . . . ; h2kg is shift-definite at a��. From Theorem 1, it gives rise to a periodic orbit

with period 2k þ 1 for system (1) with a��. Clearly, 0 is in this orbit. h

Proposition 4. For all a 2 ½
ffiffiffi
2

p
; a2kþ1Þ, suppose fxi; i ¼ 0; 1; . . .g is the orbit of system (1) starting from the initial state

x0 ¼ 0. Then, x1 ¼ �D, and for i ¼ 1; 2; . . . ; k þ 1,
x2i ¼ �H2iðaÞD; ð15Þ

x2iþ1 ¼ �Q2iþ1ðaÞD: � ð16Þ
Proof. We can directly verify that
x2 ¼ �H2ðaÞD ¼ �ða� 1ÞD;
x3 ¼ �Q3ðaÞD ¼ �ða2 � a� 1ÞD:
Suppose the equations in (15) and (16) hold for i6 k. We will prove that they also hold for iþ 1.

Since a < a2kþ1 6 a2iþ1, we have Q2iþ1ðaÞ < 0, and hence x2iþ1 > 0. So,
x2iþ2 ¼ ax2iþ1 � D ¼ �ðaQ2iþ1ðaÞ þ 1ÞD¼ð11Þ �H2iþ2ðaÞD:
Since a >
ffiffiffi
2

p
> �aa2iþ2, we have H2iþ2ðaÞ > 0, and hence x2iþ2 < 0. So,
x2iþ3 ¼ ax2iþ2 þ D ¼ �ða2Q2iþ1ðaÞ þ a� 1ÞD¼ð8Þ �Q2iþ3ðaÞD: �
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Proposition 5. If a <
ffiffiffi
2

p
, then

i(i) 0 62 f ð½�P2ðaÞD;P2ðaÞDÞÞ;
(ii) f 2ð½�P2ðaÞD;P2ðaÞDÞÞ ¼ ½�P2ðaÞD;P2ðaÞDÞ.

Proof. The conclusion follows from the following calculations:
f ð½�P2ðaÞD;P2ðaÞDÞÞ ¼ ½�D;Q3ðaÞD [ ½�Q3ðaÞD;DÞÞ
f 2ð½�P2ðaÞD;P2ðaÞDÞÞ ¼ f ð½�D;Q3ðaÞDÞ [ ½�Q3ðaÞD;DÞÞ

¼ ½�P2ðaÞD; 0Þ [ ½0;P4ðaÞDÞ [ ½�P4ðaÞD; 0Þ [ ½0;P2ðaÞDÞ

¼a<
ffiffi
2

p
½�P2ðaÞD;P2ðaÞDÞ: �
Now we are ready to prove the following theorem.

Theorem 4. For every positive integer kP 1, system (1) has a ð2k þ 1Þ-periodic point if and only if aP a2kþ1.

Proof. The sufficiency is given by combining Lemma 6, Theorem 1(i), Theorem 2 and Lemma 5.

To prove the necessity, we show that when a < a2kþ1, there is no periodic points of order 2k þ 1. By Lemma 2, we

only need to show that 0 is not a periodic point of period 2k þ 1.

Firstly, when
ffiffiffi
2

p
6 a < a2kþ1, Proposition 4 says that 0 is not of periodic 2k þ 1. Secondly, when 1 < a <

ffiffiffi
2

p
,

Proposition 5(ii) says f 2kð0Þ 2 ½�ða� 1ÞD; ða� 1ÞD�. Proposition 5(i) then says that f 2kþ1ð0Þ 6¼ 0. h

3.4. Other even-order periodic points

Lastly, we turn to all remaining even-order periodic orbits (other than 2n-periodic orbits discussed earlier).

We need two propositions.

Proposition 6. If a < a3, then f 2
a ðxÞ restricted to ½�ða� 1ÞD; ða� 1ÞD� and fa2ðxÞ restricted to ½�D;D� are topologically

conjugate.

Proof. Let hðxÞ ¼ x=ða� 1Þ. We can verify that
hðf 2
a ðh�1ðxÞÞÞ � fa2ðxÞ ð17Þ
for x 2 ½�D;D� when a < a3.
Firstly, we have
f 2
a ðxÞ ¼

a2xþ Dða� 1Þ; x 2 ½�D=a; 0Þ
a2x� Dða� 1Þ; x 2 ½0;D=aÞ

�
ð18Þ
and, when a < a3, for each x 2 ½�D;D�,
h�1ðxÞ ¼ ða� 1Þx 2 ½�ða� 1ÞD; ða� 1ÞD� � ½�D=a;D=aÞ:
Hence,
hðf 2
a ðh�1ðxÞÞÞ ¼ 1

a� 1
f 2
a ðða� 1ÞxÞ ¼

1

a� 1
ða2ða� 1Þxþ Dða� 1ÞÞ; x 2 ½�D; 0Þ

1

a� 1
ða2ða� 1Þx� Dða� 1ÞÞ; x 2 ½0;D�

8><
>: ¼ a2xþ D; x 2 ½�D; 0Þ

a2x� D; x 2 ½0;D�

�

¼ fa2ðxÞ: �
Proposition 7. Any periodic orbit of a prime even period 2k > 2 contains at least one point in the interval
ð�ða� 1ÞD; ða� 1ÞDÞ ¼ ð�P2ðaÞD;P2ðaÞDÞ.

Proof. If this is not the case, then there is at least one point in the periodic orbit, say z0 2 ð�D;�ða� 1ÞD�, satisfying
f ðz0Þ ¼ az0 þ D > �aDþ D ¼ �ða� 1ÞD, so it must belong to ½ða� 1ÞD;DÞ. We thus have
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f 2ðz0Þ ¼ a2z0 þ aD� D
which, by similar reasoning, is in ð�D;�ða� 1ÞD�. In general, we have
f 2iðz0Þ ¼ a2iz0 þ ða2i�1 � a2i þ � � � þ a� 1ÞD:
Since z0 is a 2k periodic point, we should have f 2kðz0Þ ¼ z0. We can solve z0 from this and obtain
z0 ¼ � a2k�1 � a2k þ � � � þ a� 1

a2k � 1
D ¼ � 1

aþ 1
D:
Since �1=ðaþ 1ÞD is 2-periodic, this is a contradiction. h

Theorem 5. System (1) has a periodic point of a prime period 2nk, k odd, kP 3, if and only if aP a2nk .

Proof. Sufficiency is given by Lemma 7(iii), Theorem 1(i) and Theorem 2. The necessity is given by combining the two

proceeding propositions. h

Some more conclusions can be drawn.

Corollary 1

ii(i) System (1) has a periodic point for all natural numbers n ¼ 1; 2; . . ., if and only if aP a3 ¼ ð1þ
ffiffiffi
5

p
Þ=2.

i(ii) For a given positive integer n, every point of the following 2n points

x0 ¼
D

an � 1

Xn�1

i¼0

hian�i�1 8hi 2 f1;�1g; ð19Þ

is a periodic point if and only if aP �aa22n.
(iii) When aP 2, for every point in the form (19) is a periodic point with period n.

Proof. (i) Is clear from Theorems 3–5.

To prove (ii) note that
h0
Xn�1

i¼0

hian�i�1 P an�1 �
Xn�2

i¼0

ai ¼ ðan � 2an�1 þ 1Þ
a� 1

:

So, for all hi 2 f�1; 1g, i ¼ 0; 1; . . . ; n� 1, the corresponding point D
an�1

Pn�1

i¼0 hia
n�i�1 is a periodic point of period n if

and only if the point D
ðan�1Þða�1Þ ðan � 2an�1 þ 1Þ is so. This is the case if and only if HðaÞ ¼def an � 2an�1 þ 1P 0. Note that
H2nðaÞ ¼ ða� 1ÞHða2Þ:
The conclusion follows.

(iii) Is a special case of (ii). h
4. Periodic solutions of type-II systems

In this section, we consider systems of type-II:
xþ ¼ f�aðxÞ ¼def � axþ D sgnðxÞ; ð20Þ
in which 1 < a < 2. We call the type-I system with the same a value as the dual system of (20).

Proposition 8. If fxi; i ¼ 0; 1; . . .g is an orbit of (20), then fð�1Þixi; i ¼ 0; 1; . . .g is an orbit of the dual system of (20)

Proof. Denote yi ¼ ð�1Þixi. Then
yiþ1 ¼ ð�1Þiþ1xiþ1 ¼ ð�1Þiþ1ð�axi þ D sgnðxiÞÞ ¼ að�1Þixi � D sgnðð�1ÞixiÞ ¼ ayi � D sgnðyiÞ:
From here, we see that fyi; i ¼ 0; 1; . . .g is an orbit of the dual system. h



X. Xia et al. / Chaos, Solitons and Fractals 19 (2004) 581–595 593
Theorem 6

i(i) For type-II systems, a point x0 2 R is a periodic point with period n if and only if x0 has the form

x0 ¼
D

an þ ð�1Þnþ1

Xn�1

i¼0

ð�1Þian�i�1hi; ð21Þ

where the parameters hi 2 f�1; 1g, i ¼ 0; 1; . . . ; n� 1, and for k ¼ 0; 1; . . . ; n� 1,
hk ¼ sgn
Xn�1

i¼0

ð
 

� 1Þian�i�1hkþi

!
; ð22Þ
i.e., the sign of the right-side term in (22) is the same as the sign of its leading term. Here, k þ i ¼ ðk þ iÞmodðnÞ for the
subscript indices of the parameters hi.

(ii) A point x0 2 R is an n-periodic point of type-II systems (20) if and only if n is the smallest positive integer such that (21)
and (22) hold.

Proof. The proof of the theorem can be carried out by procedures similar to the proof of Theorem 1. h

Proposition 9. x0 2 ½D;D� is a ð2nþ 1Þ-periodic point of (20) if and only if
y0 ¼
a2nþ1 þ 1

a2nþ1 � 1
x0
is a ð2nþ 1Þ-periodic point of its dual system.

Proof. By Theorem 6, there are 2nþ 1 ‘‘sign’’ parameters, fh0; h1; . . . ; h2ng, satisfying (22) for k ¼ 0; 1; . . . ; 2n, such that
x0 ¼
D

a2nþ1 þ 1

X2n�1

i¼0

ð�1Þia2n�i�1hi:
Note that
y0 ¼
D

a2nþ1 � 1

X2n�1

i¼0

ð�1Þia2n�i�1hi:
If we denote h0i ¼ ð�1Þihi, then by multiplying both sides of (22) with ð�1Þk , we obtain, for k ¼ 0; 1; . . . ; 2n,
ð�1Þkhk ¼ sgn
X2n�1

i¼0

a2n�i�1ð
 

� 1Þkþihkþi

!
;

i.e.,
h0k ¼ sgn
X2n�1

i¼0

a2n�i�1h0kþi

 !
;

so, the parameters fh00; h
0
1; . . . ; h

0
2n�1g is shift-definite at a.

By Theorem 1, y0 is of 2nþ 1 periodic for system (1). We use exactly the same argument to show that conversely if

y0 is of 2nþ 1 periodic for (1) then
x0 ¼
a2nþ1 � 1

a2nþ1 þ 1
y0
is of 2nþ 1 periodic for (20).

The conclusion holds of course for prime odd periods. h

Finally, we have the following result.

Theorem 7

i(i) System (20) has a periodic point of a prime period 2n for any a 2 ð1;1Þ.
(ii) System (20) has a periodic point of a prime period 2nk, n ¼ 0; 1; 2; . . . ; kP 3, k odd, if and only if aP a2nk .
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Proof

i(i) For any a 2 ð1;1Þ, system (20) has a fixed point at D=ðaþ 1Þ. From Theorem 3,

x0 ¼
D

a2m � 1
P2mðaÞ

is a 2m-periodic point for (1). From Proposition 8, x0 is a periodic point for (20) with period 2m. 2m is clearly the

prime period according to Proposition 8 and Theorem 2.

(ii) For n ¼ 0, we know from Proposition 9 that system (20) has a k-periodic point (kP 3 odd) if and only if system (1)

has one of such periodic point. By Theorem 4, this is the case if and only if aP ak .

When aP a2ð2kþ1Þ, denote the periodic orbits of systems (1) and (20), starting from
x0 ¼
D

a2ð2kþ1Þ � 1
Q2ð2kþ1ÞðaÞ;
as fxi; i ¼ 0; 1; . . . ; 2ð2k þ 1Þ � 1g and fyi; i ¼ 0; 1; . . . ; 2ð2k þ 1Þ � 1g, respectively. By Theorem 5, fxi; i ¼ 0; 1; . . . ;
2ð2k þ 1Þ � 1g is a 2ð2k þ 1Þ-periodic orbit for (1). From Proposition 8, fyi; i ¼ 0; 1; . . . ; 2ð2k þ 1Þ � 1g is a periodic

orbit for (20) with period 2ð2k þ 1Þ. We will show that 2ð2k þ 1Þ is the prime period for (20).

Assume that there is a positive integer n0 < 2ð2k þ 1Þ, such that y0 ¼ yn0 . Then n0 must be a factor of 2ð2k þ 1Þ.
Firstly, n0 could not be even. Since if it is even, then, the equalities xn0 ¼ ð�1Þn

0
yn0 ¼ y0 ¼ x0, contradicting the fact

that 2ð2k þ 1Þ is the prime period of x0.
Secondly, if n0 is a positive odd integer, then xn0 ¼ �yn0 ¼ �x0; x0 6¼ 0, since otherwise it is again contracting the fact

that 2ð2k þ 1Þ is the prime period of x0.
Denote the ordered set of polynomials, defined in (2) corresponding to the coefficients of Q2ð2kþ1ÞðaÞ, with decreasing

order of powers, as
Pfh0 ;h1 ;...;h2ð2kþ1Þ�1g ¼ fP0ðaÞ; P1ðaÞ; . . . ; P2ð2kþ1Þ�1ðaÞg:
Then, from the previous development, we have, in particular,
x0 ¼
D

a2ð2kþ1Þ � 1
P0ðaÞ;

xn0 ¼
D

a2ð2kþ1Þ � 1
Pn0 ðaÞ:
Since x0 > 0, xn0 < 0. Therefore, the leading coefficient of Pn0 ðaÞ is hn0 ¼ �1. We thus have
hn0Pn0 ðaÞ ¼ P0ðaÞ:
This is in contradiction with the conclusion of Lemma 7 that P0ðaÞ ¼ Q2ð2kþ1ÞðaÞ is strictly minimal at all a2ð2kþ1Þ 6 a < 2.

When a < a2ð2kþ1Þ, it is clear that there is no 2ð2k þ 1Þ-periodic point for (20).

For kP 1 and mP 2, suppose fyi; i ¼ 0; 1; . . . ; ð2k þ 1Þ2m � 1g is a ð2k þ 1Þ2m-periodic orbit of system (20). Then,

from Proposition 8, we know that ð2k þ 1Þ2m is a period of a periodic orbit defined by fxi ¼ ð�1Þiyi; i ¼
0; 1; . . . ; ð2k þ 1Þ2m � 1g for system (1). ð2k þ 1Þ2m is actually the prime period for fxi; i ¼ 0; 1; . . . ; ð2k þ 1Þ2m � 1g.
Since otherwise there is a positive integer, n0 < ð2k þ 1Þ2m, such that x0 ¼ xn0 , so that

(1) when n0 is even, it follows from the relation y0 ¼ yn0 ¼ xn0 ¼ x0 that ð2k þ 1Þ2m is not a prime period of the orbit

fyi; i ¼ 0; 1; . . .g (a contradiction);

(2) when n0 is odd, it is easily verified that n0 is a factor of 2k þ 1, therefore, 2n0 < ð2k þ 1Þ2m, but 2n0 is a period of the

orbit fxi; i ¼ 0; 1; . . .g, contradicting to the assumption that ð2k þ 1Þ2m is a prime period.

From this, we conclude that system (20) has a ð2k þ 1Þ2m-periodic point if and only if aP að2kþ1Þ2m . h

5. Concluding remarks

For a Delta-modulated feedback system, we have determined the a values for which periodic orbits of each order

exist for the case when 1 < jaj < 2. A vivid illustration of the results are given with the help of the roots of the

polynomials with ‘‘sign’’ coefficients. We have presented the differences and similarities between the tent map and the

map f discussed in this paper in terms of their topological properties and the mechanisms of giving rise to periodic

orbits via parameter variations.
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Combining with the results that we obtained in [16] for the cases of jaj6 1 and jajP 2, the relationship between the

existence of periodic points and the parameter a is now completely characterized.

Just to complete the list, we summarize the results of [16] concerning periodic points as follows. When a ¼ �1, there

are both 1-periodic and 2-periodic points. For each a, �1 < a < 0, there are two 1-periodic (fixed) points. For each a,
06 a < 1, there are only two 2-periodic points. When a ¼ 1, all points in ½�D;DÞ are 2-periodic points.

Note that when a < 0, f is an endomorphism on ½�D;D�, and when 1 < a < 2, f is an endomorphism on

½�D=ða� 1Þ;D=ða� 1Þ�. The results obtained in this paper comply with Sarkovskii�s results on the ordering of periods

of an endomorphism. When a > 0, f is also an endomorphism on ½�D;D�. In this case, the Sarkovskii�s ordering

is changed only ‘‘slightly’’ in the sense that the ordering is kept to the second from the last one which is 1.
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