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Dynamic HIV/AIDS Parameter Estimation With
Application to a Vaccine Readiness Study in Southern

Africa
R. A. Filter*, X. Xia, Senior Member, IEEE, and C. M. Gray

Abstract—This paper proposes a procedure of parameter esti-
mation for all parameters of the three-dimensional HIV model. The
least square based procedure uses standard optimization routines
to allow parameter extraction for individual patients. It is shown
how additional information from outside a measurement dataset
can be included in the estimation routine to increase the reliability
and accuracy of parameter estimates. A dataset from 44 patients of
Southern Africa is analyzed to find the set point and the time until
set point for these patients together with an estimate of the model
parameters with confidence intervals for the cohort. The procedure
is also applied to a long-term dataset of the HIV/AIDS progression
to find possible variations in parameters.

Index Terms—Bioengineering and medical systems, HIV/AIDS
physical parameters, parameter estimation, parameter variation,
set point estimation.

I. INTRODUCTION

AMODEL that describes the interaction of HIV with the pa-
tients immune system and the influence of drugs on the

virus can be a helpful tool to decide on treatment strategies in
HIV/AIDS patients. One such model is the three-dimensional
(3-D) model described in [1] and [2]. Highly active antiretroviral
therapy (HAART) in combination with mathematical modeling
has helped to reshape the perception of the disease [3]–[5]. To
use this model as a tool for treatment decisions, model param-
eters must be determined from measurements that are acquired
on equipment that is accessible to local health services. Since all
parameters of the 3-D model can be determined from CD4 T
cell levels and viral load in blood [6] (as opposed to higher di-
mensional models [7]), this model is a good starting point for
practical applications.

The viral load in HIV patients may be a critical endpoint in
vaccine trials by which to judge efficacy [8]. The 3-D model
is used in this context to estimate the set point viral load. This
paper presents a procedure that can be used to extract all six
model parameters of the 3-D model on a per-patient basis. In

Manuscript received November 22, 2003; revised October 10, 2004. This
work was presented in part at the 13th IFAC conference on System Identifi-
cation and Control, Rotterdam, The Netherlands, 2003. Asterisk indicates cor-
responding author.

*R. A. Filter is with the Department of Electrical, Electronic and Computer
Engineering, University of Pretoria, 0002 Pretoria, South Africa (e-mail:
s98013051@tuks.co.za).

X. Xia is with the Department of Electrical, Electronic and Computer Engi-
neering, University of Pretoria, 0002 Pretoria, South Africa.

C. M. Gray is with the National Institute for Communicable Diseases, 2131
Johannesburg, South Africa.

Digital Object Identifier 10.1109/TBME.2005.844274

situations where it is not possible to extract all six, the pro-
cedure can accommodate generalizations of some parameters.
This flexibility is achieved by implementing an estimation rou-
tine that combines standard optimization methods with a cus-
tomizable least square (LSQ) based cost function.

The results are presented in three parts. First the basis of
the estimation procedure is described. Secondly the procedure
is validated with generated data and published parameter es-
timates. After validation, the estimation of viral set point and
parameters for a cohort of patients from a HIV/AIDS vaccine
readiness trial is presented. This is followed by an application
where the procedure is applied to long-term data to extract pos-
sible variations of parameters. Finally conclusions from the re-
sults and impetus for further research are presented.

II. PROCEDURES

A 3-D model of HIV/AIDS, considered here, consists of three
variables: the population sizes of uninfected cells , infected
cells , and free virus particles . Free virus particles infect
uninfected cells at a rate proportional to the product of their
abundances, . The rate constant, , describes the efficacy of
this process. Infected cells produce free virus particles at a rate
proportional to their abundance, . Infected cells die at a rate

, and free virus particles are removed from the system at a
rate . By assuming a constant production rate, and death rate

for the uninfected cells, the 3-D model of virus dynamics is
obtained [1], [2]

(1)

Furthermore, for the purpose of estimating model parameters, it
is assumed that plasma viral load, and CD4 T cell count,
are measured, in accordance with the current prevailing medical
practice [9].

In the following sections, is the vector of
model parameters, and the estimate of these
parameters. The state vector , and the
initial state vector .

A. Cost Function Overview

As with the method considered in [10], this method is in
essence least square (LSQ) based, but with two important
differences. Firstly, derivative estimation is only present in the
controlled environment of the numerical ordinary differential
equation (ODE) solver. Secondly, the cost function is not limited
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to the LSQ distance, but can be expanded with penalty terms
to increase the accuracy of parameter estimation.

The Nelder-Mead Simplex search method is used as the
optimization routine1 and the steps in the cost function are as
follows.

1) The function receives a list of data points for the CD4 T
cell and the virus count with their respective time points.
Together with these, is also passed to the function.

2) When constraints are specified for , they are enforced at
this point. If constraints are not met, a simplified cost is
returned.

3) The function uses and solves the dynamic model of
(1). This is done within the framework of a pre-existing
numerical ODE solver.

4) The differences between each data point and its predicted
value are squared and summed.

5) Any additional penalty terms are calculated and added to
the total cost, which is returned to the optimizing function.

At each iteration of the search, the cost function is called by the
optimization routine, until the pre-set tolerance is met. Since
the numerical solution of the ODE can be time consuming, it is
desirable to keep its evaluation to a minimum, thus a simplified
cost is returned at Step 2), if any of the constraints are not met.
Clearly this method is not prone to the derivative estimation
error, as is the LSQ method considered in [10].

Apart from the problem of derivative estimation, a second
drawback in the pure LSQ method is that the equations that are
fitted to the data, contain product terms of CD4 T cell and virus
counts. This forces the data vectors to be of equal length for
proper estimation. Since the cost function does not require any
product terms, this constraint on the length of CD4 T cell and
virus data vectors can be dropped.

The basic cost for a nominal set of parameters, , and initial
conditions, , is computed by generating and with a nu-
merical ODE solver. Together with measurements of and

measurements of , at time , and re-
spectively, the basic cost function is defined as

(2)

From [11], it is known that the viral load tests are log based.
Also for the experiments performed in [2], the virus data is fitted
to the least square of logarithmic distance. Thus, following the
scheme in [12, p. 444], the basic cost is modified to incorporate
logarithmic distance for the virus data points

(3)

In both cases data vectors are weighted by their mean value and
length. For group analysis it is useful to use the means of the
cohort data to allow better comparison between patients. Stan-
dard procedures apply when adding individual weights to sam-
ples. If detailed information is available about the variances in

1Successful estimation is not dependent on the chosen search method but,
due to abrupt changes in the cost landscape, it is desirable to start with a search
method that does not rely on a smooth cost function. At the solution point of the
initial search, one can switch to a different algorithm.

data points, this information can be incorporated as in [12, pp.
448–449].

B. Penalty Terms and Additional Refinements

When a dataset does not contain enough information for pa-
rameter estimation on its own, it might yet be possible to extract
key parameters when prevailing circumstances are known. In
these situations the addition of custom penalty terms to the cost
function is helpful, since the penalty terms allow outside knowl-
edge of the dataset to be incorporated into the parameter estima-
tion cycle. Refinements in the cost function are incorporated at
steps 2) and 5) above. Common refinements for this paper are
as follows.

• Enforcing limits: This is done at Step 2), before the
intensive calculations in the cost function, by checking
parameters against a predefined range and correcting any
parameters that do not fall within the specifications.2

A second option is to add parameter limits to the cost
value at Step 5). This allows for weighted penalties where
parameter limits are not well defined. The second option
is not desirable for hard limits, since the computationally
intensive ODE will be solved even when the parameters
fall outside the prescribed limits.

• Prior knowledge of parameters: When a parameter is
known from another source (e.g., experiment, assumption
or literature), this knowledge is incorporated at Step 2).
Here the optimization routine can be instructed not to
search for fixed parameters.

• Prevailing conditions: When prevailing conditions (e.g.,
a patient is in steady state before initiation of therapy) for
a dataset are known, these conditions are added by means
of an additional term in Step 5). This term must be scaled
to ensure its proper influence.

As an example, consider the experiment described in [2, pp.
16–19] (originally published in [13]). In this experiment key
assumptions were made to extract two of the six parameters.
Firstly each patient was assumed to be at steady state (set point
has been reached) before initiation of therapy. This is a pre-
vailing condition for that experiment, since the author had ac-
cess to viral load data before the experiment, which indicated
that the viral loads were in steady state. Second, in [1, p. 32] it
is stated that infected cells live longer than free virus. This in-
formation is reflected in by adding two terms to the cost

(4)

where is either or is the vector of computed viral
loads returned by the ODE solver and truncated after a few days,
and the scaling constants and are chosen such that any
violation of the prevailing conditions result in a marked increase
of the cost function.

The first refinement term is the maximum numerical deriva-
tive of , which corresponds to the knowledge that the patient is
in steady state before initiation of therapy. As alternative for this
term, the positive numerical derivatives can be summed, subject

2In contrast to fminsearch in Matlab, some solvers allow constraints
to be placed separately from the main cost function. When available, this
option should be used to place hard limits on the parameters.
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to the proper adjustment of the scaling constant . In either
case, no positive derivative should be allowed initially for the
viral load. An intuitive way to see this is to note that therapy
results in a decline of virions, thus, an increasing virion count
could only be the result of fluctuations before therapy, which
is not possible since the patient was in steady state at the start
of therapy. The second refinement term corresponds to the state-
ment that the average infected CD4 T cell lives longer than free
virions.

Other refinements and performance enhancements are pos-
sible: One can limit the range of set points before the compu-
tationally intensive ODE solver to increase performance (i.e.,
check that at Step 2) for experiments where one
assumes 100% effective HAART).

At times, it may be advantageous to dictate the search order
of parameters. Parameters with low variation between patients
(as the results for and in [2] indicate) are then introduced
into the search at a later stage. For instance, and can be fixed
at initial values during the first stage of the search until a preset
tolerance is met. The search is then continued, this time allowing
all parameters to vary.

III. VERIFICATION OF METHOD

A. Generated Data

First, the described procedure is checked against generated,
well-posed data, exceeding all requirements of [6]. The test-set is
generated with the aim to accommodate the range of parameters
described in literature [1], [2], [14]–[19]. Some parameters
vary considerably among authors—here the choice is biased
toward [1] and [2]. Parameter and set point variations are
discussed further in [18] and [19].

1) Generated Data With a Random Component: As a
starting point, a dataset is generated for

, and
. Without any random component, the

estimation routine achieves a near-perfect estimation of pa-
rameters (results not shown). A random component with a

-normal variance of 0.6 in the virus and a normal variance
of 50 in the CD4 T cell count, is added to the data to simulate
inaccuracies in measurements [11].

The first estimate of parameters is made without any as-
sumptions added to the cost function. The result is shown
in Fig. 1, which corresponds to

. Note that and
are not correctly estimated. Their values should be exchanged,
since the original data has as basis and . This
difference can be seen in the number of infected cells in Fig. 1,
but not in the CD4 T cell or virus counts. The exchange of
and reflects the fact that the CD4 T cell and virus counts of
(1) are symmetric with respect to and [1]. Since the infected
cell count is not available to the estimation routine when deter-
mining the parameters, the cost function has to be augmented
with the knowledge that to correct this exchange. This
addition to the cost function was described in Section II.B.

After adding the relevant penalty terms to the cost function,
a second estimation is performed. Fig. 2 shows the result. The
CD4 T cell and the viral levels are nearly identical in Figs. 1

Fig. 1. Estimate of parameters on noisy data, without penalty term
assumptions added to the cost function. Note the difference of infected
cell levels between the original parameter simulation (dashed) and the
estimated parameter simulation (solid). Compare Fig. 2.

Fig. 2. Estimate of parameters on noisy data with a penalty term, assuming
that � < c, added to the cost function. Note the similarity of infected cell levels
for the original parameter simulation (dashed) and the estimated parameter
simulation (solid). Compare Fig. 1.

and 2, but the predicted levels for infected CD4 T cells differ.
The infected cell levels are not available as a measurement in
practice, but since the data for this test-case is generated from
(1), a comparison is possible. In both Figs. 1 and 2 the expected
level of infected CD4 T cells is given by the dashed line. Only
in Fig. 2 does the predicted level (solid line) match the expected
level.

The second parameter estimate is unchanged from the
first estimation, except that and are exchanged, i.e.,

. Note that the
order of and is correct. The correct estimation is a direct
result of the addition of the penalty term, , to
the cost function which implies that . It is clear that the
estimation procedure responds correctly when outside knowl-
edge is added. The next section investigates if the estimation is
still reasonable with less data-points.

2) A Dataset With Reduced Number of Data Points: The the-
oretical limit for the minimum number of data points for an esti-
mation of parameters, under conditions of persistent excitation,
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Fig. 3. Estimate for dataset with reduced number of points. Original parameter
simulation—dashed; Estimated parameter simulation—solid.

was derived in [6]. It becomes increasingly hard to meet all con-
ditions of identifiability in practical situations. To ensure that
sample data complies with identifiability requirements, a time
schedule can be set up that allows some flexibility in sampling
intervals without jeopardizing parameter identifiability after the
initiation of HAART [16], [17]. Before such a time schedule for
measurements can be finalized, its viability for model identifi-
cation has to be determined. As an example, to show the ap-
plicability of the proposed procedures, a dataset is created with

and the time points taken from the schedule as in Fig. 3.
The proposed schedule is intended for use after initiation of

HAART, thus the initial CD4 T cell level is chosen to be
and is chosen near the set point value of with

and according to [1]

(5)

After determining the viral point, is lowered to ,
and is lowered to corresponding to the assump-
tion that HAART in this case is 90% effective in reducing
and about 80% effective in reducing . A random component
is added to both the CD4 T cell and virus counts, as with the
previous dataset. The estimate corresponding to Fig. 3 gives

. The as-
sumption that the patient is in steady state was not added to the
estimation procedure, since this assumption is only made to ap-
proximate a value for . If such information is available, the
accuracy of estimation can be increased.

B. Reproducing a Published Experiment

In this section, the parameter estimation of and for three
patients in ([2, pp. 16–19] (originally published in [13]) is
repeated. The patients under consideration were treated with
protease inhibitors, allowing for additional assumptions to
be made about the system. By fitting a reduced system to
sample data it was possible to estimate both and . Here
the estimation is repeated, but instead of reducing the system
equations, the assumptions are added directly to the cost func-
tion through penalty terms, as described in Section II-B. The

TABLE I
COMPARISON OF RESULTS WITH A PUBLISHED EXPERIMENT. THE HALF-LIFE

FOR c IS COMPUTED AS t = (ln 2=c) AND SIMILARLY FOR �

same two parameters as in the experiment are estimated and
all assumptions described in the experiment are included in
the repeated estimate. This is done to verify that the procedure
correctly handles the addition of custom penalty terms to the
cost function. The results are compared in Table I.

The small data window for this experiment does not allow
clear information to be found about the initial conditions. A de-
pendence on is to be expected [1], and from the results it is
evident that the estimation of , and to a lesser degree, of , is
dependent on outside information about the initial level of the
virus concentration.3 When this information is added to the es-
timation procedure through , the results compare very well
with those published in [2] and [13].

IV. APPLICATIONS IN HIV/AIDS RESEARCH

A. Results From a Vaccine Readiness Trial

This subsection describes the extraction of parameters for pa-
tients who took part in an HIVNET 28 vaccine readiness study.
As described in [8], viral load may be a critical endpoint in vac-
cine trials by which to judge efficacy. It is important to define
viral dynamics in unvaccinated infected individuals, especially
in non-B subtype infections where little information is available.
The main aim was to determine the set point for these patients.
Also, the time from seroconversion to reach this set point is of
interest for the trial.

1) Study Population: Fifty-one individuals with recent
HIV-1 infection were recruited from four countries in southern
Africa. Details of the cohort are given in [8] and sample data
for four patients is shown in Table II.

2) Outline of Procedure: The minimum requirement for es-
timation of parameters is five viral load and four CD4 T cell
measurements [6]. Thirty-four of the fifty-one participants had
enough samples to meet the minimum requirements.
For these patients the estimation routine was initiated with ini-
tial as in Section III-A. After the first iteration of parameter
estimates, the model curves were plotted and examined for each
patient. For patients where the initial fit was not deemed ade-
quate, the parameters were adjusted manually. The parameters
found in this manner were then averaged out for all patients and

3An estimate for ~x can be found by keeping all parameters at the values
published in [2] and instructing the optimization routine to search for the initial
values that minimize the cost function.
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TABLE II
DATA POINTS FOR FOUR PATIENTS OF THE HIVNET 28 STUDY

used as the new starting point for the final computer based pa-
rameter search.

Once the parameters for each patient had been estimated, the
set point was calculated using (5). The fluctuations in the mod-
eled viral load were analyzed in each patient to find the elapsed
time from seroconversion where the set point is reached. The
time from seroconversion to the point where the fluctuations fall
within 0.5 of the values of the set point is taken as an esti-
mate for the time to reach set point.

3) Patients With Insufficient Data Points: Of the seventeen
remaining patients, seven did not have enough data to be useful
for this study. The other ten patients had insufficient data points
for a complete evaluation of parameters on their own, but al-
lowed first order estimates in the context of the cohort. For these
patients, the assumption was made that does not differ signifi-
cantly from the other patients in the cohort [2]. For a discussion
of identifiability in situations where key parameters are fixed,
see [6]. To solve the estimate of set point for patients with less
measurements (say, as for P541 000 242), the clearance
rate constant of the virus, , was fixed at the average value of
the participants with five viral load and four CD4 T cell
measurements. After one initial estimation run, these estimated
parameters were used as the initial point to do a second iteration
where c was allowed to vary. Thus, by adding these ten patients
to the initial group, parameters were estimated for forty-four of
the fifty-one participants.

4) Parameter Ranges and Assumptions: Even though the
minimum requirements for parameter estimation were met,
estimation is still subject to the following assumptions:

• Patients are in the early stages of infection, based on the
enrolment data. The midpoint between the last HIV-neg-
ative sample and first positive sample is taken as an esti-
mate to the time of seroconversion.

• The initial CD4 T cell concentration does not exceed
1200 copies per microliter, based on the data from healthy
patients with similar background.

Fig. 4. Model result for three patients with (5 + 4) samples. See Table II.

TABLE III
PARAMETER ESTIMATES FOR THREE PATIENTS THAT MEET THE

IDENTIFIABILITY REQUIREMENT

• Initial values for the viral load coincide with the first viral
load measurement.

• Patients do reach a steady-state in viral load.
• Fluctuations due to factors outside the model are of a

lesser degree in viral load than in CD4 T cell count.
• The order of and is not dictated in this instance of the

cost function, but corrected after estimation.
• The model parameters for patients in this cohort allow a

common initial parameter set to be found from where the
search procedure is drawn to a global minimum in the cost
function of individual patients.

• The parameters published for subtype-B infection are
close enough to such a common point to be used in the
first iteration of the parameter search.

• The bias introduced by human intervention in deciding on
the initial point is negligible.

5) Study Results: Fig. 4 shows model predictions compared
to the data-points of the three patients in Table III.
(P536 000 015 solid-marked *, P536 000 080 dotted-marked o,
P525 000 171 dash-dot-marked x). Fig. 5 gives a detailed view
for P541 000 242 ( points). The markers indicate data points
and the corresponding model prediction is shown by the solid
line. The set point estimate is indicated by a dashed line, and
the time to set point is taken at the point where the modeled
viral load falls between the dotted lines.

Table III shows the parameter estimates for the three
sample patients that meet the minimum requirements for es-
timation. From the final estimation, we have the following
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Fig. 5. The model and the original data for P541 000 242. Different definitions
for the time to set point are shown.

Fig. 6. Normal probability plot of set point estimations.

median estimate of parameters:
.

The normal probability plot of set point estimations for
all patients in Fig. 6 gives a visual indication that the estimates
follow a log-normal distribution. The Bera-Jarque parametric
hypothesis test of composite normality confirms this at a signif-
icance level of 0.298.

The calculated median time to set point was 16.57 months
(497 days) and the based median of the calculated set point
distribution was 4.08 (12143 RNA copies/ml). In three partici-
pants the parameter estimates indicated continuous variation of
viral load, indicating that no set point was reached within the
modeled time-frame.

6) A Note About Confidence Intervals: The main aim of the
data analysis for the vaccine readiness trial is to determine a
benchmark point for patients from southern Africa [8]. It turns
out that the set point estimation is robust against variations in the
parameter estimates for this dataset. The set point distribution is
log-normal with median value of . The mean value
is 3.99 with a standard deviation of 0.56, and 95% confidence
interval of [3.82, 4.16] for the mean, and [0.46, 0.71]$ for the
standard deviation [12].

For the estimation of days to set point, the definition has a
direct influence on the result. Since the simulated curve from
the ODE solver is used to determine the point at which a patient
reaches set point, the estimation is bound to be higher as when

the samples are used for this estimation. As an illustration of
this, one can look at Fig. 5. The definition used for this study
gives 497 days to reach set point. If the definition is taken as
the last data point outside the prescribed range it is 474 days.
Both definitions are influenced by the estimate of the time from
seroconversion. For the definition in this paper, the mean days
to set point is 508 days, with a standard deviation of 187. The
95% confidence interval is [449, 567] for the mean and [153,
239] for the standard deviation.

For the parameter estimates it is harder to analyze the results.
The confidence intervals for each parameter, assuming a normal
distribution, can be easily determined for a group of patients
[12], but such closed form equations are not defined for indi-
vidual patients. Worse still, for nonlinear models the parameter
estimates are not in general unbiased [12].

The Bera-Jarque test for composite normality
indicates that, of all the parameter esti-

mates for the group, only might be considered to
come from a normal distribution. Whereas the same test

indicates that
, and might be taken as log-normal. Based on this in-

formation, it is reasonable to follow the scheme in [12, p. 444],
where a logarithmic transformation is applied to parameters in
order to stabilize the random variation, without linearizing the
model. In this way one can find the mean values for
to be ,
which corresponds to a mean value of

for . The 95% confidence interval for
the mean is

and the based standard deviation for the parameters is
.

B. Parameter Variation From Infection to the Onset of AIDS

To get an indication of the variation of parameters over the
course of the disease, a dataset from [5] is considered here. In
the early stages after infection, the variation in both CD4 T cell
and virus levels is clear. This is followed by a period of relative
stability and finally, at about 3000 days, the levels indicate pro-
gression from steady state to AIDS. A normalized version of
the dataset is displayed in Fig. 7 together with each parameter
estimate, to give a visual reference of disease progression. This
dataset is used in [14] as a benchmark to compare compliance
of different HIV/AIDS models to real data.

One concern in [14] is that the model (1) does not track the
data from infection until the onset of AIDS with a single set of
parameters. It was noted that patients’ parameters change during
the course of the disease [20]. By estimating parameters from
infection to the onset of AIDS our study offers a simulated con-
firmation of this.

The dataset is interpolated and the parameters are estimated
for a fixed data window, which is moved over the data at
fixed increments. Large time difference between measurements,
combined with interpolation, result in erratic estimates if a
perfect fit of the curve is searched for at each point. To prevent
this, the estimation procedure exits with a higher tolerance
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Fig. 7. The progressive estimate of parameters over the course of HIV/AIDS.
The estimate for each parameter is represented by a solid line. s is limited to
50. The dash-dot line shows a normalized CD4 T cell count and the dotted line
shows the normalized virus level. The normalized levels are shown as a visual
reference of disease progression and are not part of the parameter estimate.

for error. Fig. 7 shows the result for a window size of 60
days, with estimates made 15 days apart. On each graph, the
normalized CD4 T cell and virus loads are plotted to give a
visual reference of the disease progression.

Instead of averaging the estimation over a few windows, the
search tolerance is increased and each subsequent search is
initialized with from the previous window. This allows for
continuity of parameters. Intuitively this scheme corresponds
to the assumption that parameters vary smoothly over time as
the disease progresses. Thus the estimation procedure factors
the results from the previous window into the next estimation,
resulting in an estimate, that is a modification of the previous
window’s . Each modification is just enough to ensure that
the cost value changes by less than the specified tolerance. In
conclusion one can see that, at each point, the estimated line
is fitted to the interpolated data, and estimation stops as soon
as a possible (as opposed to a locally near optimal) solution
is found. An intuitive description of this procedure would be
that the parameter estimate for each window is the “nearest
plausible neighbor” to the estimate of the bordering windows.

In Fig. 7, the increase in is halted by the assumption that
. Most estimations tend toward unreasonable values with

the onset of AIDS at about 3000 days. The estimations , and
stay fairly constant until the onset of AIDS, whereas the esti-

mations for , and show a steady increase, even before the
onset of AIDS.

V. CONCLUSION

By designing and implementing a custom cost function, a di-
verse base of information from outside the basic dataset can
be used to extract model parameters for the 3-D HIV/AIDS
model. This method can identify parameters in situations where
an orthodox LSQ method would fail. Together with the advan-
tage of higher quality estimates in situations where the data
is well-posed, the developed method can use information from
outside the dataset to provide reasonable estimates for data that
cannot be used with a pure LSQ method. The presented method

is a step forward in the effort to supply patients with individ-
ualized parameter estimation. The estimates made in literature
were for at most two parameters per dataset, whereas the proce-
dures described in this paper can estimate all six parameters. It
should be noted that the conditions for successful estimation, as
described in [6], still apply if no external information is avail-
able to support the basic LSQ cost function.

A standard table that is proposed for data acquisition in hos-
pitals and clinics is considered here. The results show that the
table would allow enough information to extract a good estima-
tion for the parameters of the 3-D HIV/AIDS model.

Many experiments in literature have data windows that are too
small to make definite conclusions about the parameters from
the published data alone. To compare results, external knowl-
edge from articles, or the description of the experiment, can be
included in the cost function of the estimation routine. Compar-
ison with a published experiment shows that it becomes increas-
ingly hard to coordinate assumptions and implicit information
when analyzing real data.

Parameter variations during the course of HIV/AIDS are still
not well understood and the basis of their variation needs to be
found. One reason for this poor understanding is the lack of high
quality data. The results show that parameters may vary con-
siderably over the course of HIV/AIDS. The data points for the
analysis of parameter variation are too sparsely sampled to draw
quantitative conclusions, rather the results show that parameters
vary over time and that, qualitatively, parameters may vary as
presented here. For example, since there is a steady decline in
CD4 T cell levels in the dataset and the results show a corre-
sponding increase in , this observation lends support to the use
of a density based proliferation term that is commonly used in
conjunction with [2], [19].

The procedure described in this paper was used successfully
to analyze the data from the HIVNET 28 vaccine readiness trial.
Despite the sparse data available per patient, the datasets com-
plied with the minimum identifiability requirements, to allow
the extraction of the average set point and time from serocon-
version until this set point is reached. Both results are important
to form a benchmark for the study of vaccination since one out-
come of the vaccine trial is to achieve a lower set point viral
load. The time it takes for patients to reach a steady state gives a
good indication of the period for which patients should be moni-
tored to ensure that some samples are taken when the patient has
reached a set point. The results show that after approximately 17
months from seroconversion, oscillations in viremia flattened to
a based median set point of 4.08, appearing no different
from reported studies in subtype B HIV-1 infected male cohorts
[8], [21]–[23]. Together with these main outcomes, initial esti-
mates for parameters are also presented.

From the analysis of confidence intervals for set point, days
to set point and the individual parameters it was seen that the
set point is robustly estimated, achieving the main goal of the
analysis. The estimate of time until set point is dependent on its
definition, and is also more sensitive to changes in parameter
estimation. For the group of patients statistical confidence in-
tervals for the parameter estimates can be generated. As a result
of sparse data, isolated parameter estimates for individual pa-
tients of the HIVNET 28 study would result in large confidence
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intervals. An ad hoc approach of confidence analysis must be
followed to determine confidence intervals for patients in isola-
tion and such approach needs to be addressed in further research.
Since patients for the study were selected subject to well defined
constraints [8], this allowed for specific conditioning of the esti-
mation routine and a clear layout of assumptions for the group.
When estimates for the cohort are combined, the data allows a
meaningful first estimate of parameters of the 3-D HIV/AIDS
model for patients from southern Africa.
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