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Improving the Security of Chaotic Synchronization
With a �-Modulated Cryptographic Technique

Xiyin Liang, Jiangfeng Zhang, and Xiaohua Xia, Senior Member, IEEE

Abstract—A secure chaos-based communication with a�-mod-
ulated chaotic cryptographic technique is developed in this paper.
We prove that a�-modulated feedback control of a 1-D discrete-
time control system gives rise to a chaotic system. Base on this
chaotic system, a modified parameter modulation scheme is pro-
posed to improve security. As illustrated by numerical simulation,
the parameter in the sender is protected by a secure cryptosystem
against two popular attacks.

Index Terms—Chaos synchronization, chaos cryptography, pa-
rameter modulation, Lorenz system,�-modulated feedback.

I. INTRODUCTION

T HERE is much interest in applying chaotic synchroniza-
tion to secure communication since the work [17] of

Pecora and Carrol was published in 1990. Following this work,
various methods for chaos-based communication have been
proposed, such as chaotic masking, chaotic modulation and
chaotic-shift keying [6], [7], [13]. However, many proposed
schemes have a low degree of security [1], [18], [19]. It is
possible to extract the encoding messages by a number of
ways, even without the knowledge of the system structure.
For example, the methods based on power analysis and return
map are popular attacks for parameter modulation chaotic
communication schemes [1], [18]. They can be used to detect
the change of parameter through analyzing the transmitted
signal perturbed by parameter variation.

Based on conventional cryptographic techniques, various
chaos-based schemes have been developed recently [14], [25].
A common feature of these methods is the utilization of state
variables of the chaotic systems as keys in the encryption
algorithms. For parameter modulation schemes, more secure
methods were proposed in [3] and [15]. In this paper, a modified
parameter modulation scheme is proposed to further improve
security. The numerical simulation shows that two popular
attacks are ineffective to our method and the parameter has a
high degree of security. In this modified parameter modulation
scheme, a continuous chaotic system with a parameter is used
to transmit encoded message. The parameter is generated by
some cryptosystem which makes it have a lot of choices cor-
responding to transmitted bit “0” or “1,” and thus be protected
against the power analysis and return map attack. As for the
construction of the cryptosystem, we use a 1-D discrete-time
system controlled by a -modulated feedback, which is quite

Manuscript received October 15, 2007. First published June 24, 2008; last
published July 16, 2008 (projected). This paper was recommended by Associate
Editor J.-P. Barbot.

The authors are with Department of Electrical, Electronic and Computer
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
lxiyin@up.ac.za; jfzhang@tuks.co.za; xxia@postino.up.ac.za).

Digital Object Identifier 10.1109/TCSII.2008.921585

different from [16] that uses the logistic map. The first reason
that we use this -modulated system is the simplicity and
speciality of -modulation, which makes it an attractive choice
for control practitioners. Yet, there is few attention on the
chaotic property of this kind of system. Another reason is that
the result can be easily extended to high-dimensional -modu-
lated control systems, which will make the cryptosystem more
secure. The complex behavior of this simple control system
due to -modulated feedback has been investigated in [10],
[21]–[24]. When some parameter in this particular 1-D
discrete system, the system is chaotic ([23], [24]) but not a
self-map. Note that the construction of a cryptosystem needs
a self-map. In this paper, we prove that when the
system is chaotic and also a self-map.

In the next section, we prove that the 1-D discrete system
controlled by a -modulated feedback is chaotic when the pa-
rameter . Then two basic requirements for security
and the framework of our method are given in Section III. With
the help of Lorenz system and a secure cryptosystem based on

-modulated feedback control system, our method is also illus-
trated in detail in Section III. In Section IV, the security of our
method is analyzed by numerical simulation. The conclusion is
given in Section V.

II. 1-D DISCRETE SYSTEM CONTROLLED BY

-MODULATED FEEDBACK

As mentioned in the Introduction, a chaotic discrete self-map
is used to construct a secure chaotic cryptosystem. Hence, we
introduce the 1-D discrete time chaotic system [23], [24]

where (1)

denotes the system state at the next discrete time, is a real
number, and is a positive constant. In [24], the authors proved
that (1) is chaotic when . In this section we consider

. For simplicity, we only consider . We will
show that this map is chaotic and maps an interval to itself, when
the parameter . Hence, it can be used to implement
a similar cryptographic algorithm as proposed in [16]. Based on
this algorithm, we illustrate the parameter modulation scheme.

Performing a state transformation , then a new map
is obtained

where (2)

When , this map is equivalent to Baker’s map which is
chaotic [11]. Hence, in the following we only consider the case

. When is surjective on . Before
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stating our main result, the following well-known and frequently
used definitions are recalled from [8].

Definition 1: ([8]) Consider a map: where
is an interval, is topologically transitive on if for any two
open sets there exists an integer such that

.
Definition 2: ([8]) Consider a map: where is

an interval, has sensitive dependence on initial conditions if
there exists a such that, for any and any neigh-
borhood of , there exist a and an such that

.
Definition 3: ([8]) Let be a metric space. A map
is said to be chaotic on if :

1) is transitive;
2) the periodic points of are dense in ;
3) has sensitive dependence on initial conditions.
In the above definitions may not be continuous (cf. [8]).

The following lemma can be found in [20] and [12].
Lemma 1: If , then :

1) there is an integer such that , where
is a subinterval in ;

2) is topologically transitive;
3) has sensitive dependence on initial conditions.
In order to prove that the periodic points of is dense, we

define and
. Obviously, the number of the points

in is at most. From (2), we can obtain that
if . In the neighbor-

hood of the discontinuous point 0, we have
.

Lemma 2: The set is dense on .
Proof: Owing to , for any open interval in which

does not include 0, the length of is larger than the length
of . Hence, there exists an integer such that is
continuous on and . Then there is an point
such that , and thus and is dense on

.
Lemma 3: For any integer , there exists an integer

such that or .
Proof: If 0 is a periodic point with period , then

.
If 0 is not a periodic point and this lemma does not

hold, then there exists an integer such that
for all the integer . If

, then .
Following the same way, we obtain that
when is even and when is
odd. After a simple computation, it is obtained that

. Because 0 is
not a periodic point, . Hence, there exists an
even integer such that or . It contradicts
with . For the other case , the
same conclusion is obtained similarly.

Lemma 4: Assume , for any integer , there
exist an integer and , such that

and .
Lemma 5: The set of periodic points of is dense in

when .

The proofs of the above two lemmas are given in the
Appendix. The idea in the proof for Lemma 4 comes from [5].
By Lemma 1 and 5, we have the following theorem:

Theorem 1: The map defined in (2) is chaotic in
when .

III. CHAOTIC SYNCHRONIZATION COMBINED WITH

CRYPTOGRAPHIC TECHNIQUE

A. Basic Requirements and the Framework of Our Method

As said in the Section I, security is one of the most important
problems in chaotic synchronization. In our opinion, if a chaos-
based scheme is secure, it must satisfy the following two basic
requirements.

1) The plaintext can not be extracted when the opponent does
not know the keys.

2) The keys have a high degree of security.
Obviously, many parameter modulation methods do not satisfy
the first requirement. With these methods, the parameter has two
states corresponding to “1” and “0.” However, the change of the
parameters results in the change of the dynamic properties of the
chaotic system. Hence, the power analysis or return map attack
is easy to distinguish the two states. With reference to the clas-
sical cryptography, the system parameters of the chaotic systems
can be treated as the secret key. However, as pointed out in [4],
many robust and adaptive control methods could be considered
for possible attack against secure communication and encryp-
tion scheme. That is, the keys have a low degree of security. To
solve these problems, we use an encryption function to protect
the system parameter.

We consider a continuous chaotic system as

(3)

where and are the state variable,
output, and parameter vector, respectively. The classical param-
eter modulation method is to change the parameter with the bi-
nary encoded plaintext, namely, has two states corresponding
to “1” or “0” of the plaintext. Our method consists of three steps.

1) Encryption , that is, a chaotic encryption function
is applied to encrypt the plaintext and produce the

parameter ;
2) Synchronization: It is not difficult to construct an adaptive

observer to estimate the state and parameter at the same
time, since many papers concentrate on this topic [2], [26];

3) Decryption , the inverse of the encryption
is applied to recover the plaintext, once we obtain the

estimated parameter value .
Without the encryption information, the opponents can not

know the plaintext, even they can estimate the parameters. In
the following subsections, we illustrate our method by using an
cryptographic algorithm introduced in [16].

B. Chaotic Cryptosystem Based on a -Modulated Feedback
Control System

A chaotic cryptosystem is proposed by Pareek et al. in [16]
based on the logistic map, . It is a sym-
metric key block cipher which utilizes the essence of chaos, that
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is, sensitivity on initial condition as well as on system param-
eter. It should be noted that the logistic map’s chaotic parameter
range is .

Now we recall the basic procedure of encryption as well as
decryption from [16]. The plaintext and the ciphertext are di-
vided into blocks of 8 bits, since ASCII is an 8-bit code which
represents 256 characters

where and are single blocks of 8-bits, is the block length
of the plaintext/ciphertext. An external 128-bits secret key

is also divided into blocks of 8 bits, where ,
the session key, is of 8-bits, and the block length is .
Let , and do the following steps.

1) Define two real number and by

where can be for any integer
and are the th session key’s ASCII value and

binary equivalent of the ASCII value, respectively,
. The notation is the decimal equivalent of the

corresponding binary number, and is the XOR operation.
2) Choose a randomly from , and let

mod 1 and , where
, and is the floor (also called

truncation) function.
3) Let , where

.
4) Define the encryption/decryption in the following way:

(4)
where , and is obtained by iter-
ating the logistic map for times at

.
5) Put the symbols corresponding to the ASCII values of

obtained in steps 4) as the ciphertext/plaintext. If
, then stop the algorithm, otherwise let

and , and go to step 2).
In order to apply -modulated feedback control system to

transmit information by chaotic synchronization, we modify
system (2) as

(5)

round is the roundoff function, and for any integer ,
belongs to the set

where (6)

Compared with the chaotic range of the logistic map,
the parameter of system (2) has wider chaotic range, .
Hence, to construct the above cryptosystem, we modify step 3)
and step 4) and keep the other steps:

3’) Let where
, and .

Obviously, .

4’) Let be , where is obtained by iter-
ating for times at the point . Then define the encryp-
tion/decryption in the following way:

(7)

To construct a new cryptosystem based on system (5), we first
select a parameter value for some , then execute
step 1), 2), 3’), 4’) and 5) to get a more secure cryptosystem.

C. Detailed Illustration of Our Method

Now we illustrate our method with the help of the celebrated
Lorenz system. According to (3), the Lorenz system with output
is written as

(8)

It is well known that the system exhibits chaotic behavior with
the standard parameters . For
the classical parameter modulation scheme [9], the parameter

is modulated by binary encoded plaintext, so that it is
if the plaintext bit is “1” and if the plaintext bit is “0,”
where is a constant. Our proposed method consists of three
steps.

Step 1 (Encryption): Let be the plain-
text sequence, where is a plaintext block of length 8 bits.
Following the procedure introduced in Subsection 3.2, is
generated is step 4’) and is obtained through (7), then we let

. The index of can be transmitted through
the parameter , that is, .

Step 2 (Synchronization): Construct an adaptive observer as
introduced in [2] to estimate the state and parameters simulta-
neously. When the synchronization is achieved, we have

and , where are the estimated param-
eters and is a small enough positive constant.

Step 3 (Decryption): At the receiver end, the same can
be generated by the discrete chaotic system in the step 4’) of
Subsection 3.2, once is estimated. Then is obtained through
(7).

Remark: In the classical parameter modulation method, the
parameter has two states corresponding to “1” or “0” of the
plaintext. This method only transmits one bit when the synchro-
nization is achieved. Compared with classical parameter modu-
lation scheme, has more choices in our method. The plaintext

is a block of 8-bits, thus our method also can transmit more
information.

IV. SECURITY ANALYSIS WITH SIMULATION RESULTS

Now we use system (8) to transfer the plaintext “Chaotic
cryptosystem” with the secret key “wh91-qa9g-k*xd/..” and the
estimated value of the ciphertext which is obtained by the
adaptive observer introduced in [2]. The initial conditions of
state variables and estimated state variables are
and , respectively. The initial conditions of esti-
mated parameters and both are 1. As for he other vari-
ables in the observer, and
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Fig. 1. For the transmitted signal generated by the classical parameter modulation: (a) bit sequence and the result of power analysis and (b) return map.

Fig. 2. For the transmitted signal generated by our method: (a) the result of power analysis and (b) return map.

. As a comparison, we also use classical param-
eter modulation scheme to transfer a bit sequence [9], which is
plotted in Fig. 1(a). In order to investigate the security of our
proposed method, we consider two popular attacks developed
in [1] and [18], that is, power analysis attack and return map
attack. For the transmitted signal generated by classical param-
eter modulation scheme, the results of two attacks are plotted in
Fig. 1. When the transmitted signal is generated by our method,
the corresponding result is plotted in Fig. 2. The power analysis
attack first filters the transmitted signal by a low-pass filter, and
then recovers the plaintext utilizing a binary quantizer. Fig. 1(a)
plots the bit sequence and the result of power analysis for the
classical parameter modulation scheme. Fig. 2(a) is the result
of power analysis under our method. Compared with Fig. 1(a),
it is obviously that the attacker can not recovery the binary se-
quence “1” or “0” from Fig. 2(a). As described by Perez and
Cerdeira [18], a small change in the parameters of the sender
affects the attractor of chaotic system. Hence, a modified re-
turn map is defined by , and

, where and are the th local max-
imum and minimum of the transmitted signal, respectively. In
Fig. 1(b), the plot of return map shows that all the segments
are divided into two parts. Fig. 2(b) shows that all the segments
merge together for different parameter. Then the attacker can

not distinguish the parameter variations. Hence, the above two
attack methods are ineffective to our scheme.

V. CONCLUSION

In this paper, a modified parameter modulation scheme, com-
bined with cryptographic technique, is proposed to improve se-
curity. As a theoretical basis of the proposed communication
scheme, we prove some 1-D discrete system controlled by a

-modulated feedback is chaotic when the parameter is in
. This chaotic map is used to construct a secure cryp-

tosystem which generates the parameter in the communication
scheme. The complex parameter generating process improves
much the security of the communication scheme, and numerical
simulation shows that the two popular attacks, power analysis
attack and return map attack, are ineffective to our communi-
cation scheme. The result will be extended to high dimensional
discrete systems to further improve security.

APPENDIX

Proof of Lemma 4: For any integer , it follows from
Lemma 1 that there exists such that .
Hence, for all . Therefore, for any integer

, there exists an integer such that
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for all . Apply Lemma 3 for this integer , then there ex-
ists an integer such that or

. Now we consider the first case of .
This case includes the following two subcases:
for all and for some .

i) If for all , then
and is continuous on .

Hence, there exists a point such that
. Then and

for all .
ii) If for some , then there

exists a maximal positive integer , such that
and the point .

Thus, and
. Now we prove that

there exists a point such that
. If it does

not hold, then there is a point such that
. Hence,

and . It contradicts with the definition of ,
hence . Because is con-
tinuous and monotonic on , there is a point

such that .
To find a point in such that this
lemma holds, it is also considered in two situations.
Firstly, if for all , that is,

for all , then
.

Since is continuous on , there exists a point
such that .

Hence, and for .
Secondly, if for some , then
there exists a maximal positive integer such
that the point , where .
Because the number of points in is finite for all ,
we can repeat the above procedure until we find a point

such that this lemma holds.
As for the second case of , by the fact that

, the same conclusion is obtained.
Proof of Lemma 5: For any interval where

, it follows from Lemma 2 that there is an
in . Since the number of the points in is finite

for all , there exists also an in
such that for all . Hence,

and continuous on . By
Lemma 4, there are two points in such
that for all , where
is some point in . Because is continuous and mono-
tonic on , there are two points in
such that and for
all . Therefore,
and is continuous on . Hence, there exists a small
enough positive such that
and is continuous on . Therefore, there is a
periodic point in .

Now we consider any interval . By Lemma 1, this
is contained in for some . Since the set of periodic
points of is dense in , we can find a periodic point in

and in .
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