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achieve exact tracking) with approximation approaches (that modify Disturbance Decoupling by Measurement
the internal dynamics) to remove the nonhyperbolicity of the internal Feedback for SISO Nonlinear Systems
dynamics. It was shown that, by giving up some of the precision

in tracking, it is possible to achieve stable inversion of nonlinear X. Xia and C. H. Moog

nonminimum phase systems with nonhyperbolic internal dynamics.
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« necessary and sufficient conditions for the static measurementemma 1: Assume the relative degreeof y is finite, then the
feedback disturbance decoupling problem (DDPO, following thfellowing statements are equivalent:
linear tradition) in Section II; 1) the systenk is disturbance decoupled;

« necessary conditions for the dynamic measurement feedbackg) Yk € N, spany {dy, dg, -- -, dy®, .Y X+ U
disturbance decoupling problem (DDDPO) in Section lll, aswell  3) v e IN, dy"**) € span, {dx, du, ---, du®};
as suﬁicignt conditiqns V\{hich are based on a new fgrmylation 4) vk € N, w® € spany{dx, du, -+, du®* D}, where
and solution to the linearization problem by output injection. wo € X, st.wg = dy'”) — &du for some nonzerg:

For the latter problem, we refer to [6] and [13] for a survey 5) dy € Q + spany {du};
and some recent new results. Our new formulation yields the safigm the induction assumption.
conclusion as in [6] but does not require the input—output differential Supposeu = afx, v) is a regular static state feedback, i.e.,

equation of the system which is difficult if not totally impossibleg, /9 £ 0. Let us investigate how2 changes under the action
to obtain due to the application of the implicit function theorem. I this feedback. DenotéC the field of meromorphic functions
is worthwhile to note that the connection of DDPO/DDDPO withyt . 4 4 and a finite number of derivatives of and ¢, and
the observer form of linear systems was discovered in [14]: the _ spang{dé|¢ € K}. Note that a regular feedback defines in

latter gives a natural and intrinsic way of constructing a dynamig natural way dield isomorphismy from K to K, and we have
measurement feedback realizing’, A, B) invariance for linear

systems. For nonlinear systems, the relation between output feedback
linearization and output injection linearization was also discovered :
in [10]. , - du® = xde+xdg+--+xdg* D fxdo+--- (3)
The input—output relation of the closed-loop system remains in (k=1) | da 4.(k)
general nonlinear, and any measurement feedback technique available +* dv + 5 dv
for unperturbed systems may be applied afterwards. :
The approach of the paper is independent from geemetric ) . — .
approach in [2] and may be used for other measurement feedb¥fkere ='s are meromorphic functions ik Sinceda/dv # 0, (3)
control problems which received a small amount of contributiorf$€fines an isomorphist from £ to £, which iscompatiblewith the

and which constitute a challenge for future research. field isomorphismo, i.e., for anyw:, w2 € &, and anyd:, #> € K,
® has the property

— Sa da g4,
du = 5 dr + 5 dv

Il. DISTURBANCE DECOUPLING BY STATIC MEASUREMENT FEEDBACKS P(01w1 + Oows) = ¢(61)P(w1) + &(62)P(w2).
ConsiderX Immediately, we have the following.
. Proposition 1: Let 2 be the subspace defined as in (2) for the
&= f(x, u, q) composite system of (1) and the feedback= «(x, v), then
y =h(x) 1) Q= 3.

A regular feedback is called a measurement feedback if it can

where z € IR" is the stateu € IR is the input,y € IR is pe written in the formu = a(z, v). DDPO of (1) is said to be
the controlled output, ang € IR is the disturbancey and . splvable if the closed-loop system under a measurement feedback is
are meromorphic functions of their arguments. Consider also thgturbance decoupled. Wheh € £, then the system is already
measured output of the system (1) disturbance decoupled. Thus, in the rest of the paper we shall assume
thatd: ¢ 2, and now we are able to give the following result.

Theorem 1: Suppose the output has a finite relative degree
Then DDPO of the system (1) is solvable if and only if:d)” €
Q+spany {dz, du} and 2)dw Aw = 0, wherew € span,{dz, du},
is such thatdy” — w € Q.

z = hm(2)

where z € R and %, is a meromorphic function. Letl denote
the field of meromorphic functions of, «, ¢, and a finite number

?(f, Ee:v:ltlv?(sl J,c})fuar?(;]g{q_'?lzi df;:eﬁ : qP;z(’ij{dﬂﬁ}E K Proof—Necessity:Supposer = «(z, v) is the decoupling
‘ D_efiIr)Ie AT = SPate @, e, U : regular static measurement feedback. Thus, we can write
v=a""(z, u). 4)
Q={weX|VkeN: .
o®) e spany {de, dy(r)7 dy(rﬁ»kfl)}}. ) Now that the closed-loop system is disturbance decoupled, by
Lemma 1
For affine nonlinear system§, is shown in [7] to be the annihilator dyfj) € Qu + spang{dv} (5)

of some controllability distribution contained iker dh. What is _ _ _
important now is the fact thaf2 is finitely computable by the inWwhichy. is the controlled output corresponding to the closed loop

following algorithm: system(2.,; is similarly defined for the closed loop system, ddds
the field consisting of meromorphic functions .ef v, ¢ and a finite
0° =span, {dz}, number of derivatives of andq. By (4), dv € span, {dz, du}, thus

O = (0 e Q0 € OF + spany {dy 1) (k € N) from (5), dy';’ € Q.1 +spang{dz, du}. Lemma 1 then implies that

: : . dy'"™ € Q + span, {dz, du}.
i.e., there exists an integéf € IN such that: 1Wk > k* +1, QF = y' €t spang{dz. du)

QF and 2)Q = Q. If dz ¢ Q, thenQNspan, {dz, du} = 0 andw is uniquely defined by
A proof of these facts can be given following the same line as Sa1 Sa1
in [7]. Before proceeding to the feedback disturbance decoupling w= £< 3 dz + 3 du)
)z u

problem, let us summarize, without proof, some of the equivalent
formulations of disturbance decoupling. for some¢ € K. This implies condition 2) in Theorem 1.
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Sufficiency: Sincedz ¢ , 1) and 2) guarantee the existence oin which0 # &; € K. And then by (7), it is a routine matter to prove
a function¢(z, «) such that that the relative degree of with respect tog is » + o4, and

Ay = wo 4+ £ do (6) Ay = €& dg + & dulT?
. . ) L . - (mod spaddz, du, ---, d'u(:a"_l)}). (10)
in whichwg € €2, £ € K. By the definition of relative degree and (5),
we haveds/du # 0, so we can define a regular static measuremeBuppose there is a dynamic measurement feedback which decouples,
feedback byu = ¢ (=, v). From (6),dy'” € Q + span,{dv}, or then since

for the closed-loop system du™® ¢ spau {da, dn, dv, - dv(k)}
d?fg;) € Qer + spang{dv}. for k¥ = 0,1,---,0, — 1, in which 5 is the state of
By Lemma 1, the closed-loop system is disturbance decouplemi. igin?;’;ag:;?d;"e?fj‘t’?agf(vaq?;g“;r::; (9)= (0a/0z) d=72) (mod
lll. DISTURBANCE DECOUPLING BY du'"? = ?)—?53 dg(mod spadda, dn, dv, -+, dvo'"?}).  (11)

DYNAMIC MEASUREMENT FEEDBACKS

In this section, we first derive some necessary conditions and thThus from (10) and (11) and the fact that the closed-loop system is

n .
sufficient conditions for the solvability of the disturbance decouplin‘ﬁs’turb"’mCe decoupled, we hav@ss + £283(90r/02) = 0. Since

problem via dynamic measurement feedback. Necessary conditi 'ﬁs7£ 0,

obtained in [2] also hold here for our case of nonaffine systems, O _ _5_1‘ (12)
though the assumption of SISO and single measurement permits 0z &

more straightforward derivations. We now only focus on developingote thata is a function ofz, 5, v, so0 da/d= is also a function
new necessary conditions that are of interest for our later use. Frgfn. ,, o If 9a/0v = 0, /9= is a function of z, 5. And if
Theorem 1, one sees that when € (2, (1) is decouplable by a 5, /9, £ 0, thenv = a~'(z, 5, u). So in either case, we can

regular static measurement feedback if and only if the system (ibw 9a/0= at the left-hand side of (12) a functiof =, ., 5),
is already disturbance decoupled. This result holds true also in jfereas the right-hand side is a function ef u, ¢ and a fi-

dynamic case. nite number of derivatives of. and ¢q. Since by construction,
Proposition 2: Suppose the controlled outpytof the system (1) 7, ; being the state of the dynamic measurement feedback, is

has a finite relative degreeanddz € 2. Then (1) is decouplable by independent fromix, du, dg, - -+, du®, dg®, ---. Thus, by dif-

a regular dynamic measurement feedback if and only if the systggientiating both sides of (12) and simple algebraic arguments, we

is already disturbance decoupled. derive that the functior (=, «, n) actually does not depend op

~ Proof: We need only to prove the necessity, i.e., condition 3ypjicitly. This means that the fractiofi /&, is a function ofz, «,
in Lemma 1. Clearly, it holds fok = 0. Suppose it holds for i.e., there is a functio(z, u) such thaté, /& = 8(z, u). This

k=0,1,---,1—1 Asin [2], we have implies thatd(¢&, /&) A dz A du = 0, or equivalently,(& d€, —
dy("“) € span{de, d=, --- =0 dqu. ... du(l)} &1d&s) A dz A du = 0, contradicting (8). This proves that DDDPO
T e ' has no solution. [
Sincedz € Q To give sufficient conditions, we first give a new formulation of
() r) (1) o the problem of linearization by output injection. Defifig = 0
dy'\""" € span{dz, dy'"’, -+, dy""" ", du, ---, du'"}. ) )
Y pan{ J v ) Ef = spany{dz, ---, dz(l”fl), du, di, - -, du(kfl)}.
i i ionfy(" Y span{dzx, du, ---, . . . o ,
5;?{;1} the induction assumptionfy € span{d, du, Givenw € E, if there exist functions (z, u), ---, ¢(z, v) such
As pointed out, the necessary condition in [2] is not sufficient; son%gat
other integrability conditions have to be imposed for sufficiency. The w = cl@’g"’_” + -+ dos, (13)
next result deals with a special case. . . L ,
then we say thatv is linearizable bys z-injections ¢, ---, ¢s.

Proposition 3: Suppose the controlled outputof the system (1)

has a finite relative degree Also suppose Clearly, a necessary condition for the linearizationwoE E by s

z-injections isw € E*. In order to give sufficient conditions, assume

™ ¢ .
dy”"” € Q2+ span{dz, du}. dim E° = 2s. (14)

Then DDDPO is solvable if and only if DDPO is solvable. e propose the following algorithm first; solvability conditions are
Proof: We need only to show that DDDPO has no solution ifhen stated in terms of integrability of some differential one forms
DDPO has none. Let defined in the algorithm.

Ay = wo + E1d= + E2 du @ Basic Algorithm: Initial check:w € E°. If no, stop! Otherwise,

denotew; := w.
in which wo € Q, &, & € K. DDPO has no solution means, by Step 1: Pick functions¢i, & € K, such that
Theorem 1, that, defining = & dz + & du, dw Aw # 0, i.e., Wi — El d-6=1 _ 55 du € gt (15)
(& d& — & d&) Adz Adu # 0. (8) Define a differential one formv, as@; = ¢! dz + £ du. Check:
dw; = 0. If no, stop!

This implies, in particular, that:¢; # 0. Since by assumption
dz ¢ Q, one proves easily that the relative degregof =~ with
respect tog is finite. For convenience, denote

Stepj—(j =2, -+, 5): Let ¢;-1(z, u) be such thatlg; 1 =
@j—1. Denotew; asw; = wj—1 — daﬁg-i?“)_. Chooset’. € € K
such thate; — &/ d=077) —¢f du*=7) € E*77. Define a differential
d=\77) = &5 dgmod span {da, du, -, du77V} (9) one formw; asw; = £ dz + & du. Check:dw; = 0. If no, stop!



1428

Theorem 2: Under assumption (14),y € E is linearizable bys
z-injections ¢y, - -+, ¢, if and only if w € E* and
fori =1, .-, s. In this case, the functions;(z, «) are unique up
to constants.

Proof—Necessity:Suppose (13) holds forg:(z, u),
¢s(z, u). Since

0

d(/')gk) =22 g0y 0¢: du(k)(mod E") a7
0z Ju ’
one easily concludes that; defined in Step 1 is
— _ 0, O
W = Ep dz + 9 du.

Thus, (16) holds for = 1. Repeat the reasoning far., etc., we
getdw, = 0, etc.
Sufficiency: First, note that the existence 6f and¢; is guaran-

teed by the conditionn € E¢, and they are unique because of (14).

Let ¢1 be such thatlo, = w;. We show thats — dagsfl) € B,
By (17)
ol = (96(/01 g1 4 2

z u

091

du®*™Y (mod E*1).
By do¢y = @y = &1 dz + €5 du, we havedé, /9z = &, d¢1/du =
&, so
dot* ™ =kl dzC7Y 4 k) duC TV (mod BXTY). (18)

Equations (15) and (18) imply that — dz,zﬁﬂsfl) € E*~. Similarly,
we can show thatv — d@SS—U — = dc,’ugf'_"') € E°~F for
k=1,2,---, s. n

To give sufficient conditions for DDDPO, let us assufieis the
maximal integerk € IN such that

dim span{dz, ---, d:(kfl), du, - -, du(kfl)} = 2k. (19)

Theorem 3: Suppose the relative degreef the controlled output
y of the system (1) is finite. If:

1) there exists finites < k™ such that
dy Y e (U4 Q4+ QD)
+ span{dz, - - -, a7V du, -, duTY b
2) there exists aw €span{dz, ---, dzC7D, du, -+, dul*~D}
such thatdy" =9 —w € Q+ -+ + Q&Y andw is

linearizable bys z-injections¢, -- -, ¢s;
3) fori =0,1,---, 5 — 2,

dy(ﬁ'-&-i) € X
+span{dé, d(bi 4+ ¢2), -+, d( ) + -4 6,)}

then DDDPO is solvable.
Proof: Let

m = ¢1(z, u). (20)

From the definition of the relative degreed$: /du # 0. Solve (20)
in » and set, with an abuse of notatian= (,bl_l z, m ). Design the
following dynamic measurement feedback:

u=07"(z.m)
i =i — Giga(z, 67 (zom)), =1 s—2
a1 =0 = 0s(z, 67 ' (2, m))-
From this construction, we note that

=0l bt o i=Les—1 (@D
v=06 +. 4o, (22)
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Consider now the closed-loop system. By 3) and (21), we have

dy™ € X + span{dn} (23)
fori =0,1,---, s — 2. And by 1)
dy" Y L e QO+ 4 Q0. (24)
Item 2) and (22) imply that
dytr e oy = gyt g, (25)
By definion of @, Q 4+ Q 4+ --- 4+ QY C

span{dz, Ay, ... dg/(r+372)}, and from (23), Q@ + S:Z—T—
ce Q6D ¢ span{dz, dn}. So from (24)

dy'" Y v € span{dz, dn}. (26)

This and (23) imply that the new relative degreeyois » + s — 1.
Also from (24)

dy T g e @ o g UrbetheD)
C span{dz, (ly('v), e du('r+s+k_2)} (27)

and using again (23)

dy(f7'+s—l+k)_d,v(k) € span{dax, dy, dy(r'+s—l)_/ dy(v'+s+k—2)}

for all £ € IN. A simple mathematical induction argument shows that
dy“+s*1+k) € span{dwz, dy, dv, dv, - - -, d'u(k)}.

Lemma 1 says then the closed-loop system is already disturbance
decoupled. [ ]

Remark 1: Note that condition 1) of Theorem 3 comes naturally
from our study on the necessity of DDDPO and Proposition
2. Condition 2) of Theorem 3 is a set of integrability con-
ditions. Concerning the existence of in 2), we would like
to point out thatw is unique when(Q + --- + QC~Y) &
span{dz, -+, dzC7V du, ---, du(sfl)} is a direct sum.

Theorem 3 does not contain Theorem 1 as a special case. At the
expense of more flexibilities in constructing items that are in need,
we are able to make the above sufficient condition general enough
to cover the case of DDPO.

Theorem 4: Suppose the relative degre®f the controlled output
y of the system (1) is finite. If:

1) there existss < k™ such that
dy" T e Q4 Q-+ QETY)
+ span{dz, - - -, dzt7Y, du, -+ -, d'u‘(sfl)};

2) there exists a functioti(z, ---, 29, «, ---, «*7V) and
an integrating facton satisfying

dy" D _Ndee Q4+ Q + 4D

andd¢ is linearizable bys z-injectionsoq, - -+, ¢;
3) fori =0,1,---, 5 -2,

ayU) e x
+span{dor, d(dy + ¢2). -, d(6V T+ + i) b

then DDDPO is solvable.
Proof: The proof can follow what has been described for
proving Theorem 3. One only needs to replaeein (25) and (26)
by #dv, in which ¢ € K satisfiess = 6d¢, and to replacelv in
(27) by d(6dv)™*). All these replacements will not affect the proof.
]
Whether the conditions of Theorem 4 are necessary or not remains
an open problem.
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IV. EXAMPLES Note that our approach was to incorporate the output injection

Examples are worked out to show the application and limitatid§chnique with the problems under consideration, a technique well
of the above results. known for linear systems [14]. Compared to the geometric approach
Example 1: The system described by taken in [2], this paper provides an approach in quite an independent

. manner and brings about appealing sufficient conditions for DDDPO.

Ty = T2, y=o While comparing with the study of the dynamic output feedback

linearization problem performed in [10], the algebraic treatment of the
output injection problem fits well with structural design of nonlinear
systems. This, hopefully, is expected to open ways for studies of other
cannot be disturbance decoupled by any regular dynamic measutgramic output feedback design problems, which, together with some
ment feedback. Since the relative degreg;dé two open questions left in this paper, are the topic for further research.

L2 =@z sin X2 + w cos w2,

1S3
I
w

3'33 =q

Q =span{dz;, dva}

dy = (w3 cos w2 — u sin x2) das + sin a2 dz + cos w2 du REFERENCES
€ Q + span{dz, du}. [1] R. Andiarti, “Invariances gérali€es pour les systhes nonliraireset
) . . applications,” Ph.D. dissertation, Ecole Centrale de Nantes, Univ. de
Definew = sin x2 dz + cos 2 du, then obviouslydw A w # 0. By Nantes, 1995.
Proposition 3, DDDPO is not solvable. [2] R Andiarti and C. H. Moog, “Output feedback disturbance decoupling
Example 2: Consider the system in nonlinear systems,JEEE Trans. Automat. Contr.yol. 41, pp.
1683-1689, 1996.
21 =w2 + sin a1, y = [3] S. Battilotti, “Noninteracting control with stability for nonlinear sys-
, tems,” Lect. Notes in Contr. Inf. S¢ivol. 196. Berlin, Germany:
Tz =x122%6 + 23 + T5 U, 2= Springer-Verlag, 1994.
e — o Y [4] ——, “Noninteraction via measurement feedback for nonlinear systems
3 =t an Fay ot es s+ (14 as)u with relative degree,” inlEEE Trans. Automat. Contryvol. 44, pp.
4 = — T3 + cos x5 + w6 sin(zixa) 774-778, 1999.
. [5] E. Delaleau and M. Fliess, “Nonlinear disturbance rejection by qua-
s = —@g g sistatic feedback,” ifProc. MTNS’93,Regensburg, Germany.

[6] A. Glumineau, C. H. Moog, and F. Plestan, “New algebro-geometric

re = conditions for the linearization by input—output injectiohBEE Trans.
It is easily computed that Automat. Contr.yol. 41, pp. 598-603, 1996.
[7] H. J. C. Huijberts, L. Colpier, and P. Moreau, “Nonlinear input—output
Q = span{dx1, daa, das}, gecoupllinglj bylggagic output feedback,” froc. European Contr. Conf.,
. . ome, Italy, .
Q4+ Q+Q =span{dey, dra, dve, d(xs + x5 +u) [8] A. Isidori, Nonlinear Control Systems3rd ed. Berlin, Germany:
. . e Springer-Verlag, 1995.
d(ws +wsu+ )} [9] A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear
span{dz, dz, dZ, du, du, dii} decoupling via feedback: A differential geometric approachltEE
i S ) Trans. Automat. Contryol. 26, pp. 331-345, 1981.
= span{dws, dg — dwy, d§ — das + d[ws sin(wiw2)], [10] R. Marino and P. Tomei, “Dynamic output feedback linearization and
du, di, dii} global stabilization,”Syst. Contr. Lett.yol. 17, pp. 115-121, 1991.

[11] H. Nijmeijer and A. J. van der Schafionlinear Dynamical Control
i s ofi Systems. New York: Springer-Verlag, 1990.

One checks that the conditions of Theorem 3 are satisfied fo13. [12] A. M. Perdon, Y. F. Zheng, C. H. Moog, and G. Conte, “Disturbance

Note that decoupling for nonlinear systems: A unified approackybernetika,
vol. 29, pp. 479-484, 1993.

[13] F. Plestan, “Ligarisation par injection d’'ergg-sortie ghéralige et
synttese d’observateurs,” Ph.D. dissertation, Ecole Centrale de Nantes,
Univ. de Nantes, 1995.

w=(1—sinz+a)dz+ (14 2)du+udi + zdi + d? + dii. [14] J. M. Schumacher, “Compensator synthesis usi6g A, B)-pairs,”
IEEE Trans. Automat. Contryol. 25, pp. 11331138, 1980.

By the basic algorithm and Theorem 2, we verify thatcan be [15] L. L. M. Van der Wegen, “Local disturbance decoupling with stability for

linearized by 3:-injectionsz + u, zu and = + cos = + u. Thus by nonlinear systems,” ihect. Notes in Contr. Inf. Sgivol. 166. Berlin,

. . . Germany: Springer-Verlag, 1991.
the construction of the proof of Theorem 3, the following dynamlf,w] X. Xia, “Parameterization of decoupling control laws for nonlinear affine

measurement feedback is a decoupling feedback: systems,"l[EEE Trans. Automat. Contryol. 38, pp. 916-928, 1993.

(Q+ Q+ Q) Nspan{dz, d, dZ, du, di, di} = 0.
w in 3) is uniquely defined by

U= —z+nm
m=nz—mz+ 22

N2 =N — cos z + v.

V. CONCLUSIONS

In this paper a necessary and sufficient conditionD@PO was
obtained as well as a necessary condition and a sufficient condition
for DDDPO. The NSC for DDPO is completely new, and it turns out
that the sufficient conditions for DDDPO are less restrictive than the
existing ones, and most importantly they provide specific procedures
to construct a dynamic output feedback. Some of the above results can
be rewritten in a straightforward manner for the class of multivariable
systems which have vector relative degrees.




