
1188 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002

(16), this, together with (18), implies that there is somec > 0 such that
J(z(t�1); x

�(t�1); ~u) � �Jr(X ) � c and this contradicts the fact that
(z(t�1); x

�(t�1)) 2 @Iadr (X ) since the latter would imply, according to
(6) thatJ(z(t�1); x

�(t�1); ~u) � �Jr(X ). This ends the proof of Propo-
sition 2. Indeed, the global aspects are immediate consequences of
Proposition 1. �
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Global Frequency Estimation Using Adaptive Identifiers

X. Xia

Abstract—Online estimation of the frequencies of a signal which is the
sum of sinusoidals with unknown amplitudes, frequencies and phases
is made through yet another well-known and simple system theoretical
tool—adaptive identifiers. Convergence of the proposed estimator is
proved. The new frequency estimator is of 3 order, as compared to
the order 5 1 resulting from Marino–Tomei observers. Results are
demonstrated via simulation.

Index Terms—Adaptive filter, adaptive identifier, frequency estimation,
observer.

I. INTRODUCTION

Consider the problem of online estimation of the frequencies!i > 0,
i = 1; . . . ; n; !i 6= !j , for i 6= j, of a signal of the following form:

y(t) =

n

i=1

Ai sin (!it+ 'i) (1)

wherey(t) is measurable, the amplitudes,Ai 6= 0, the phase angles,
'i, are constant but also unknown. For simplicity, the signal in (1) is
unbiasd. However, the technique to be developed can also be applied
to a signal with an unknown constant bias.

Though this estimation problem is an important one in systems
theory with applications in diverse fields [2], most of the existing
solutions have been sought from the perspective of signal processing
and/or telecommunication: line enhancers [14], finite impulse re-
sponse filters [13], infinite impulse response filters or notch filters [7],
[10], [11], and frequency locked loop [6]. They are also local. The
first globally convergent estimator was proposed only recently in [3]
for the case of a single frequency. This global estimator is based on
the adaptive notch filter (ANF) and takes the following form:

�� + 2�!̂ _� + !̂
2
� =!̂2

y

_̂! =g 2� _� � !̂y �!̂

g =
�

1 +N �2 +
_�

!̂

2

(1 + � j!̂j�)

(2)

with � > 1 and�, N and� positive reals.
The paper [3] has stimulated several responses from the control the-

oretical community. First, it was found in [15] that a simple fourth
order estimator can be designed through the so-called Marino–Tomei
observers for the case of a single frequency. Though the estimator is one
order higher than the one given in [3], it has a simpler and more of a con-
trol system theoretical structure, as well as a more elegant global sta-
bility proof. Independently, [5] obtained the same result via designing
an adaptive observer for the case of a single frequency and generalized
the method to multiple frequencies with an unknown constant bias. It
is noted that the order of this estimator is5n� 1 for the case ofn fre-
quencies. Another solution was provided by the application of a linear
tracking differentiator [1].
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In this note, a new solution is proposed by using yet another well-
known and simple system theoretical tool—adaptive identifiers. Con-
vergence of the proposed estimator is proved. The new frequency esti-
mator is of 3n order. Results are demonstrated via simulation.

In Section II, the case of a single frequency is considered. The
Marino–Tomei observer designed in [15] is reviewed for comparison
purposes, followed by a third order estimator designed using adaptive
identifiers. Note that the stability condition for the Marino–Tomei
observer is slightly different from those given in [4] and [5]. The
multiple frequency case is discussed in Section III. Section IV shows
the simulation results and conclusions are drawn in Section V.

II. GLOBAL ESTIMATOR OF A SINGLE FREQUENCY

Note that whenn = 1 the sinusoidal signal in (1) satisfies

�y(t) + !2y(t) = 0 (3)

which has the following state-space realization:

_x1 =� �x2

_x2 =x1

y =x2 (4)

in which� = !2. Perform the following filtered transformation,�1 =
x1 � ��. �2 = x2, in which:

_� = �b� � y (5)

andb is a positive real, then the system (4) is transformed into

_�1 =b��

_�2 =�1 + ��

y =�2: (6)

The system (6) is in the so-called adaptive observer form [4], thus
admits a global adaptive observer

_z1 =b��̂ + k1 (y � z2)

_z2 =z1 + ��̂ + k2 (y � z2)

_̂
� =
� (y � z2) (7)

in which
 is a positive real andk1 andk2 are chosen as [4],k1 = �b,
k2 = � + b, with a positive�.

A slightly more general result can be stated as: whenk2 > b > 0,
k1 > 0, 
 > 0, the system (7) and (5) is a global adaptive observer
of (4) with global parameter exponential convergence, i.e., ast!1,
k�̂(t) � �k ! 0.

To prove this conclusion, defining

A0 =
0 0

1 0
�b =

b

1
c0 = [ 0 1 ]:

Note thatc0(sI � A0 � kc0)
�1�b = (s+ b)=(s2 + k2s+ k1) and

this transfer function is positively real if and only ifk1 > 0, k2 > b.
The rest of the proof follows exactly the same line as in the proof of

[4, Th. 5.3.2]. To provek�̂(t) � �k ! 0, note that the persistency of
excitation condition now reads as

t+T

t

�(� )2d� � k0 > 0

which, by (5), holds, thus [4, Th. 5.3.3] applies and the convergence of
the parameter is guaranteed.

Having the estimation̂� of �, the frequency estimation can be ob-
tained aŝ! = �̂.

Note the estimator given by (5) and (7) is of order 4. A third-order
estimator is given as follows by making use of the technique of adaptive
identifiers [12].

To develop such an estimator, first reparameterize (3) through formal
Laplace transform of the both sides, ignoring the terms with initial con-
ditions

s2y(s) = ��y(s):

Let �1 and�2 be two positive-real numbers, then

s2 + �1s+ �2 y(s) = �1sy(s) + (�2 � �) y(s):

Denote� = �2 � � and�(s) = s2 + �1s + �2, then

y(s) =
�1s

�(s)
y(s) +

�

�(s)
y(s):

This relationship has the following state-space realization:

_�1 =�2;

_�2 =� �2�1 � �1�2 + y(t)

(t) =�1�2(t) + ��1(t)

=�1�2(t) + �2�1(t)� ��1(t): (8)

Note that this last equality holds only when (8) is properly initial-
ized: in general, the right-hand side of the equality differs fromy(t)
by terms exponentially vanishing due to initial conditions ignored in
the above derivation. Note also that (8) gives a parameterization con-
taining one parameter for the unknown frequency. In this sense, it is a
certain simplification of the external identifiers of [8] and [9] where a
parameterization with two parameters per frequency was introduced.

Equation (8) is referred to asthe identifier structure[12]. The iden-
tifier output

yi(t) = �1�2(t) + �2�1(t)� �̂�1(t)

differs from the signaly(t) by an identifier error

e(t) = yi(t)� y(t)

due to different initialization of (8) and estimation̂� of �.
Now the parameter update law can be generated in a number of ways

as demonstrated in [12]. In this note, the standardgradient algorithm

_� = ge(t)�1(t) (9)

in which g > 0, or thenormalized gradient algorithm

_� = g
e(t)�1(t)

1 + 
�21
(10)

in which 
 > 0, are used.
Equations (8)–(9) or (8)–(10) give a third-order estimator for�.
The convergence of the parameter estimate�̂ is guaranteed by the

persistency of excitation condition of�1 [12, Th. 2.5.3], i.e.,

t+T

t

�21(�)d� � k > 0

is satisfied for someT > 0 and everyt � 0. To see that�1 is persis-
tently excited, note from (8) that

�1(s)

y(s)
= H(s) =

1

�(s)
:

Since the sinusoidal signaly(t) in (3) is sufficiently rich of order 2
with spectrum points at! and�! and the transfer functionH(s) is
proper and stable andH(j!) 6= 0, then from the second half of [12,
Th. 2.7.2],�1 is persistently excited.

For a comparison with the adaptive notch filter (2) obtained in [3], a
second-order differential equation in terms of�1 is derived from (8)

��1 + �1 _�1 + �2�1 = y (11)
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and expanded form of (10) is written as

_� = g
�1 _�1 + �2�1 � �̂�1 �1

1 + 
�21
: (12)

It is noted that the basic structure of the adaptive notch filter and the
adaptive identifier is similar. The third equation in (2) gives a special
structure of parameter tuning, therefore, a different gain.

III. GLOBAL ESTIMATOR OFn FREQUENCIES

Since

y =

n

i=1

Ai sin (!it+ 'i)

one has

�y =

n

i=1

�iAi sin (!it+ 'i)

in which�i = �!2
i . Similarly

y
(4) =

n

i=1

�
2
iAi sin( omegait+ 'i);

...

y
(2n) =

n

i=1

�
n
i Ai sin (!it+ 'i) : (13)

Rewriting the previous firstn equations

y

_y
...

y(2n�2)

= V

A1 sin (!1t+ '1)

A2 sin (!2t+ '2)
...

An sin (!nt+ 'n)

in whichV is the Vandermonde matrix

V =

1 1 � � � 1

�1 �2 � � � �n
...

...
. . .

...
�n�11 �n�12 � � � �n�1n

:

Since!i 6= !j for i 6= j, �i 6= �j for i 6= j, the Vandermonde matrix
V is nonsingular. Thus, one solves

A1 sin (!1t+ '1)

A2 sin (!2t+ '2)
...

An sin (!nt+ 'n)

= V
�1

y

_y
...

y(2n�2)

:

Substituting this into (13), we have

y
(2n) =(�n1 ; �

n
2 ; . . . ; �

n
n)V

�1
y; _y; . . . ; y(2n�2)

T

=� �1y
(2n�2)

� � � � � �n�1�y � �ny: (14)

It can be verified that
n

i=1

s
2 + !

2
i = s

2n + �1s
2n�2 + � � �+ �n�1s

2 + �n:

So, (�1; . . . ; �n) is an invertible reparameterization of the original
n unknown frequencies (!1; . . . ; !n). The estimation of (!1; . . . ; !n)
can then by obtained by first estimating (�1; . . . ; �n).

To estimate (�1; . . . ; �n), the technique of the adaptive identifiers is
used.

Rewrite (14) in thes-domain by taking Laplace transform of both
sides of the equation, ignoring the terms depending on initial conditions

s
2n
y(s) = ��1s

2(n�1)
y(s)� � � � � �n�1s

2
y(s)� �ny(s):

Let �(s) = s2n + �2ns
2n�1 + � � � + �2s + �1 be a Hurwitz poly-

nomial and denote

�k = �2k+1 � �n�k

for k = 0; . . . ; n � 1, then

�(s)y(s) =

n

k=1

�2ks
2k�1

y(s) +

n

k=1

�k�1s
2(k�1)

y(s)

and thus

y(s) =

n

k=1

�2k
s2k�1

�(s)
+ �k�1

s2k�2

�(s)
y(s): (15)

Denote

� =

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

��1 ��2 ��3 � � � ��2n

; b� =

0

0
...
0

1

and define

_w = �w+ b�y (16)

then the signal has the following time-domain realization, if (16) is
properly initialized:

y(t) =

n

k=1

�2kw2k(t) +

n

k=1

�k�1w2k�1(t):

If the identifier structure (16) is initialized differently and an estimate
�̂i is made for�i, thenthe identifier output

yi(t) =

n

k=1

�2kw2k(t) +

n

k=1

�̂k�1w2k�1(t)

differs from the signaly(t) by an identifier error

e(t) = yi(t)� y(t):

Now, the parameter update law can be given as the following gradient
algorithm:

_� = ge(t)W (t) (17)

where �̂ = (�̂1; �̂3; . . . ; �̂n)
T , W (t) =

(w1(t);w3(t); . . . ; w2n�1(t))
T and g > 0, or the

normalized gradient algorithm

_� = ge(t)
W (t)

1 + 
W T (t)W (t)
(18)

where
 > 0.
Equations (16)–(17) or (16)–(18) give a 3nth-order estimator for�.

The convergence of the parameter estimation is guaranteed by the per-
sistency of excitation ofW (t). To see thatW (t) is persistently excited,
note from the construction of� andb� that

(sI � �)�1b� =
1

�(s)
1; s; . . . ; s2n�1

T
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Fig. 1. Estimation of large frequency.

Fig. 2. Estimation of small frequency.

and the transfer function betweeny(t) andW (t) is

W (s)

y(s)
=

1

�(s)
1; s2; . . . ; s2(n�1)

T

= HW (s)

since the sinusoidal signaly(t) in (3) is sufficiently rich of order 2n
with spectrum points at!i and�!i, for i = 1; . . . ; n and the transfer
functionHW (s) is proper and stable andHW (j!i) are linearly inde-
pendent fori = 1; . . . ; n, then from the second half of [12, Th. 2.7.2],
W (t) is persistently excited.

Since�̂i is exponentially convergent, estimation of�!2
i (and there-

fore!i) can be computed as the zeros of the polynomialsn+�̂1s
n�1+

� � � �n�1s + �̂n.

IV. SIMULATION

Simulation is carried out in the Matlab/Simulink environment.
First of all, the fourth-order observer is simulated against large and

small frequencies. The parameters are tuned asb = 1, 
 = 1000,
k1 = 100, k2 = 300 and all initial conditions for the observer are set
to 1.

For comparison, simulations of the third-order identifier are also car-
ried out for the same signals. In this case, the identifer parameters are
tuned as�1 = 100,�2 = 300,g = 9000000,
 = 1000 and all initial
conditions are set to 1.
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Fig. 3. Estimation of = 1.

Fig. 4. Estimation of = 5.

Fig. 1 shows the simulation results when the signal is
y(t) = 40 sin(100t+ 229:18�).

It is observed that a quicker estimation can be given by the adaptive
identifier than by the adaptive observer. However, the initial response
of the adaptive identifier undergoes very abrupt fluctuations.

Fig. 2 shows the simulation results when the signal is
y(t) = 3 sin(t + 229:18�).

It is observed that periodic steady state errors/fluctuations exist for
the estimation given by the adaptive identifier. The response of the
adaptive observer is also quicker. In practical situations, a further low
pass filter might need to be cascaded with the adaptive identifier.

Next, it is assumed that the following signal with two frequencies is
available for measurement,y(t) = sin(t) + 1:35 sin(5t).

Choose�1 = 2:5, �2 = 5, �3 = 10, �4 = 3, and therefore, the
identifier structure is

_�1 =�2

_�2 =�3

_�3 =�4

_�4 =� 3�1 � 10�2 � 5�3 � 2:5�4 + y(t) (19)
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and the identifier output isyi(t) = 2:5�4 +10�2+ (5� �̂1)�3+ (3�
�̂2)�1. The parameter update law is defined by the standard gradient
algorithm in whichg1 = g2 = 7500

_�1 =7500(yi(t)� y(t))�3
_�2 =7500(yi(t)� y(t))�1: (20)

The estimations of!1 and!2 are then given by

!̂1;2 =
��̂1 � �̂2

1
� 4�̂2

2
:

The estimator consisting of (19) and (20) is a sixth-order one. In
simulation, all initial conditions are set to be zero.

A simulation is also done wherey(t) is corrupted by a uniform
random noise between�0.01 and 0.01.

Fig. 3 shows the convergence of the first estimated frequencies for
both uncorrupted and corrupted version ofy(t). Fig. 4 shows the con-
vergence of the second estimated frequencies for both uncorrupted and
corrupted version ofy(t).

It can be observed that the estimations are accurate for both uncor-
rupted and corrupted signals. Simulation is also done for large corrup-
tions, it is found that when corruptions are larger in magnitude, the
steady state errors are bigger.

V. CONCLUSION

A design of adaptive identifiers to globally estimate the frequencies
of a signal composed ofn sinosuoidal components was shown. Con-
vergence of the proposed estimator is proven. The new frequency esti-
mator is of 3n order, comparing with the order5n� 1 of the estimator
through Marino–Tomei observers. Results are demonstrated via simu-
lation.
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On Semiglobal Stabilizability of Antistable Systems by
Saturated Linear Feedback

Tingshu Hu and Zongli Lin

Abstract—It was recently established that a second-order antistable
linear system can be semiglobally stabilized on its null controllable region
by saturated linear feedback and a higher order linear system with
two or more antistable poles can be semiglobally stabilized on its null
controllable region by more general bounded feedback laws. We will show
in this note that a system with three real-valued antistable poles cannot
be semiglobally stabilized on its null controllable region by the simple
saturated linear feedback.

Index Terms—Actuator saturation, antistable systems, semiglobal stabi-
lizability.

I. INTRODUCTION

There has been a long history of exploring global or semiglobal sta-
bilizability for linear systems with saturating actuators. In 1969, Fuller
[1] studied global stabilizability of a chain of integrators of length
greater than two by saturated linear feedback and obtained a nega-
tive result. This important problem also attracted the attention of Suss-
mann and Yang [9]. They obtained similar results independently in
1991. Because of the negative result on global stabilizability with satu-
rated linear feedback, the only choice is to use general nonlinear feed-
back. In 1992, Teel [11] proposed a nested feedback design technique
for designing nonlinear globally asymptotically stabilizing feedback
laws for a chain of integrators. This technique was fully generalized by
Sussman, Sontag and Yang [8] in 1994. Alternative solutions to global
stabilization problem consisting of scheduling a parameter in an alge-
braic Riccati equation according to the size of the state vector were
later proposed in [7], [10], and [12].

Another trend in the development, motivated by the objective of de-
signing simple controllers, is semiglobal stabilizability with saturated
linear feedback laws. The notion of semiglobal asymptotic stabilization
for linear systems subject to actuator saturation was introduced in [5]
and [6]. The semiglobal framework for stabilization requires feedback
laws that yield a closed-loop system which has an asymptotically stable
equilibrium whose domain of attraction includes ana priori given (ar-
bitrarily large) bounded subset of the state space. In [5] and [6], it was
shown that, a linear system can be semiglobally stabilized by saturated
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