1716 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

Well Posedness of Piecewise-Linear Systems With Multiple Il. POLYHEDRAL CONES

Modes and Multiple Criteria First, two properties of polyhedral cones are investigated.

Problem One: For a given subspac€ C R", is apolyhedral cone
P = P(T) = {z|x € R", Tx > 0} for somem x n matrix T’
contained in\/?

Abstract—in this note, the results of a previous paper are generalizedto ~ Problem Two: Given anm x n matrix T', is thepolyhedral cone
obtain necessary and sufficient conditions for the well posedness of piece- P = P°(T) = {z|r € R", Tz > 0} = 0?

wise-linear systems with multiple modes and multiple criteria. To check the To solve these problems, we make use of the Fourier—Motzkin elim-
necessary and sufficient conditions, we present new algorithmic procedures ination procedures [4], [9], [3]

by making use of the famous Fourier—Motzkin elimination technique. For the first problem, denote dimA dim A" and find a
s = codim/N =n—dim.N,
Index Terms—Hybrid systems, lexicographic inequalities, piece- matrixC; € R™*"™ such that\" = ker Cy, and letC; € R("~")*" pe
wise-linear systems, well posedness. such that CT., ¢I)7 is a nonsingular matrix, and define a coordinate
transformation by

X. Xia

z =

. INTRODUCTION C
{ B!

Cz :| =

An important class of hybrid systems is the one described by piece-
vv.lse-llr?ear.systems [11], [2], [8], [10], [7]. A fpndamental |s§ue O[henP(T) C A is equivalent to
piecewise-linear systems is the problem of existence and uniqueness
of solutions, or the well-posedness problem [12]. {zeR"Az>0} C{z€R"|z1 =0, ..., 2. =0} )
In [7] and [6], the problems of well posedness and feedback w which 4 = TC—.
posedness are investigated under the definition of Carathéodory so'“benoteAi theith column of4, andA, theith row of A.
tions. For systems with two modes, or bimodal systems, both the proby s myma 1: If P(T) C A then
lems of well posedness and feedback well posedness are completelx) for eachi ¢ ‘{1 ..., v}, at least one element of is positive
characterized for the case of a single criterion. For bimodal systems and one elemént 0,4‘ is: negative: ’
with multiple criteria, simple necessary and sufficient conditions are ) for eachi € {r + 1, ..., n} eI’ements ofd’ cannot be all
also found for the well posedness problem in [7]. For a special case of2 positive or negative. Tl

multiple modes, a set of necessary and sufficient conditions are given Proof: 1) By contradiction. Without loss of generality, assume
for the well-posedness problem under the assumption that each mﬁ*nd% all elelmentsyoﬂl are positive ther1, 0 g())T beI())/,ngs to
’ » My ey

. . " . ha
is observable in [7]. To check the conditions, [7] proposed an algorit e set at the left-hand side of the inclusion (1), but not the set at the
Hiﬁn-hand side. SaP(T) ¢ N.

based on a linear programming argument. However, it is noted that
linear programming (LP) problem as formulated there is degenerate.”5y Ao by contradiction. Assume, without loss of generality, all

In this note, we generalize the above results about WeII-posednesélgpnents ofd™ are positive, then choose a numbBesuch that
piecewise-linear systems to the more general case. Necessary and suf- ’

ficient conditions are derived for the well-posedness problem of piece- A2 = {13127;'77} @
wise-linear systems with multiple modes and multiple criteria. We also -
define a concept of mode well posedness: the existence of solution #@N it is easy to verify thatl, 0, ---, 0, A)" € P(4), but does not
unigue mode, and show that the characterization of [7] in the multiphé!ong to the right-hand side of (1).
cases is for mode well posedness. Another feature of the note is thEOUrier-Motzkin Elimination: Denote
approach to check these necessary and sufficient conditions. Instead() = {klag, <0} P ={k|lar, >0} Z = {k|lar. =0}
of a linear programming approach, we present an approach by makin%
use of the technique of the Fourier—Motzkin elimination, which is weft"
known in linear optimization [3]. Finally, algorithmic procedures are =2 +|Q x P|
worked out.
The organization of the note is as follows. In Section IlI, thén which, denoting - | for the size of a finite set
Fourier—Motzkin elimination is introduced to study some important Define matrixB, called a Fourier—Motzkin elimination of, as
properties of polyhedral cones. Section Il is devoted to developing B= X (n—1)
- o . =(bij) ER
necessary and sufficient conditions for well posedness. An algorithm
are given in Section IV. Section V is the conclusion. in the following way.
We will make extensive use of the notations and results of [7]. In par- « For the first|Z| rows
ticular, we will use the following notation: for lexicographic inequali-

i1

. "o . ) . . br; = ayr;
ties ofz € R", ifforsomei,z; = 0(j = 1,2, ..., 7 — 1), while ki = KL
z; > 0(<0), we denote it byr > (<)0. forj =1, ..., n — 1, and some (one and only oné) € Z.
* For the las{P x Q| rows
a;r
bi' = dy/; — Ln I
§= Wprn k')
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Theorem 1:

1717

Now, for each of the ladf” x Q| rows of B, since there is a (unique)

) If » < n, (1) holds if and only if the Fourier—Motzkin elimina- index set(i’. &) € P x @ such that

tion B of A exists and

0}.

i) If » = n, (1) holds if and only ifA" has both positive and
negative elements and

)

{zeR"MB:>0}C{ze€R" 21 =0,..., 2

{2eR"Bz>0}C{zeR"z1=0,..., 2.1 =0}. (3)
Proof: (Necessity): Caser < n: The existence of the
Fourier—Motzkin eliminationB of A is implied by Lemma 1.
Forany(zi, ..., 2,—1)" € {z € R*™"|Bz > 0}, by the con-
struction of the matrix3, one has

Wi1Z1 + 0t Ain—1Zn—1 ai1z21+ 0t Ain—12n—1

max < min
ieP —ain iEQ —din
Choose &, such that
G121+ -+ Ain—12n—1
max <Zzn
ey —in

ai1z1 + -+ din—12n—1

< min

bilzl +---+ binfl Zn—1

A;lp (1270
=\ an— agry Yzt L a1 —
Ap'n

(e e

ak’nfl>2n71

Ailpn
(agnzi+Fappn_12n—-1)

=ainzit a1 Zn—1—

Aprn

7y a7y

> izt A i, iz — = (ag 24 Fag, _ Ze-1)
kn

=ainz1+- o+ ap1Zn—1 + airpZn

©

2 i z1t ot Qi —1Zn—1 T Qi Zn 2 0. (10)

Combining (8) and (10), one has, ..., z.—1)" € {z €

R""YBz > 0}.

Finally, from (4), it is easy to see théti, ...,
a contradiction.

Caser < n:Forany(zi, ..., z,)T € P(A), fromthe construction
of B, it is concluded thatzi, ..., z.—1)” € P(B). So from (2),
z1=0,..., z = 0. Thatis, (1) holds.

Now, it is ready to give an algorithm to check whetli&f7') C A
for a matrix7 € R™*™ and subspace ®&" of co-dimension-.

zn_1)" is not zero;

€qQ —Qin
Algorithm SubCone
then itis easy to see thét, ..., z,)" € {z € R"|Az > 0}.Soby Step 1: Find a nonsingular matrix C =
@), (21, .. z2) T =0, 0ie,(z10 ez 1) €{z € R Yz = (CT, CHT ¢ R™™ such that N = kerC;. De-
0,..., 2 =0} note Al =7C-! and r» =n—dimN
That is, (2) holds. Check: all elements of the last column
Caser = n: By Lemma 1,4” has both positive and negative ele- of A! are positive or negative. If yes,
ments. stop.
Similar to the proof of (2), we can prove that (3) holds. Step & (2 < k < n — r). Find the
(Sufficiency): Caser = n: By contradiction. Assume that = Fourier—Motzkin elimination of Ak—1 as
(z1y . ne, z,L)T € {z|Az > 0}, but(z, ..., z,l)T # 0. Then, for Ak,
all k € Q, Check: all elements of the last column
of A* are positive or negative. If yes,
agrzy + ot Agn—1Zn—1 + Qo zn > 0. (4) stop!
Step £ (n —r» +1 < Lk < mn) Find the
Define Fourier—Motzkin elimination of Akl as
- ARtz A —1 20—t A*,
TR —kn () Check: the last column of A* has both

then by (4) and the fact that.,, s are negative, one has > 0.

Definez = (21, ..., zu—1, )" , then by (4) and (5), it is verified
that A,z > 0, for k € @, and there is an indek € @ such that
Az = 0. Thatis,k € Q is chosen such that

ap 21+ dag, zao+ap,Z. =0 (6)
and for all otherk € @
Ap121 4 F Qe Zn—1 > a7z, %1 +---+ A, _1%n—1 . (7)
—Qkn A%,
One claims that
(Z1yeeey 2nmt) € {2 € R"7'Bz > 0}.
As a matter of fact, for the firdtZ| rows of B, obviously
birzi+ -+ bin-12n-1 2> 0. (8)
From (4) and (6), one knows that.,(z, —z») > 0, or
Zn > Zn. 9)

negative element and positive elements.
If not, stop!

If it passes all the steps of the algoritlBubConethen one concludes
that P(T) C V.

We now turn to the second problem. Denote the Fourier—Motzkin
elimination of " by F(T').

Theorem 2: P°(T') = 0 if and only if the elements of the last
column ofT are not all positive nor all negative, aftf (F(T")) = (.

Proof: (Necessity) If all elements of the last column Bfare

positive (negative), thet0, ..., 0, )T ((0, ..., 0, —=1)T) belongs
to P°(T). If we denote in the Fourier—Motzkin procedure BsQ,
and Z the sets of row indices of the elements of the last column with
positive, negative and zero elements, respectively, then there are only
the following three cases:

) P #£ ¢ and@ # 0;

1)) P =¢andZ # 0,

i Q@ =0andz # 0.

In case Il), the Fourier—Motzkin eliminatidi(T) is defined by rows
in Z of the matrixT. If (x1, ..., zn—1)* € P°(F(T)), choose

a1 xy + ot A1 X1

T, < min
1€Q

—Ain



1718 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

then it is easy to see théty, ..., =,)T € P(T'). A contradiction. Definition 3: LetS be asubset GR™. If for the initial statex, there
Similarly, in case Il),P°(F(T)) = 0. exists are > 0 such thate(¢) € S forall t € [0, €], then we say that
Incasel), If(x1, ..., #,—1)" € P°(F(T)), chooser, satisfying the system has the smooth continuation property,atith respect to
Ginds e Aoy &. Moreover, if from allzy € S smooth continuation is possible with
max —+71 ool respect taS, then the system is said to have the smooth continuation

el —lin 3
b i 1wy property with resp_ect to?_. _
< 1,%1(191 — [7, Lemma 2.1] is easily generalized.
' o Lemma 2: The following statements are equivalent.

which exists, by the construction &f(T). Then, it is easy to see that i) The system (11) is C-well posed.

(#1, ..., 2,)T € P(T). A contradiction. i) For the system (11), from every initial statg € R", smooth
(Sufficiency) Again, there are only the aforementioned three cases.  continuation is possible in one of the modes, in other words,
In cases Il) and )P (F(T)) = () implies P*(T) = §. with respect to
In case I, if(z1, ..., z,)T € P°(T), then by the construction of
F(T), (1, ..., 2n_1)" € P°(F(T)). So againP?’(T) = 0. {xeR"|Clz=0,....Clix =0}

To checkP(T') = §, we propose the following algorithm. o
except for the cases that solutions in any two modes are the same

in some time interval.

Algorithm EmptyCone iiiy For every initial statero € R, the following hold.

Step £ (1 < k < n). Check whether the

elements of the last column of T are all a) Thereisari ¢ {1....,m} andé > 0 such that
positive or all negative, if yes, then Cleti'ag =0, ..., CPietitey = 0 (13)
stop.
T :=F(T) and goto Step k+1 fort € [0. 6).
b) For anyi # j, if
If it passes all steps of the algorithBmptyConethenP(T) = §). Cletiag =0, ..., CPettitag = 0
Remark 1: Both algorithms can be improved by arguments of ex- C’}E,Ajt;l'o >0,..., c’j‘.’je“‘iﬂpo =0

treme rays, as done in the dual algorithms of double description [5]. fort € [0. 6), then

I1l. NECESSARY ANDSUFFICIENT CONDITIONS etlug = et (14)
Consider piecewise-linear systems described:iyodes, and each fort € [0, §).
mode is defined by Proof: The equivalence of i) and ii) can be worked out along the
. ’ same lines as in [7, proof of Lemma 2.1]. Condition iii) is just a restate-
= A;x, whenC;z =0, ..., CfZT =0 (12) ment of ii).
fori =1,..., m,inwhichz € R", A;'saren X n matrices,O] is Denote, fori = 1. ..., mij = I, o P
ag; x nmatrix, fori = 1, ..., mandj = 1, ..., pi. T
Whenm = 2, the system (11) is called bimodal. For a bimodal Ti —

system,ifpy = 1,p2 =1, q1 =1, g = 1,andC = C{ = —C}, :
then the system is called a bimodal system with a single criterion. TS
Note that the form of (11) already appeared in the discussions of thﬁ i

note [7]. However, necessary and sufficient conditions were presen%dere’ fork =1, a

for the case of bimodal case and a special case with multiple modes and Cle
multiple criteria. In (11), the creiteria are also defineddagicographic C'jkAi
inequalities,and no observability condition is imposed fot;, C7), Ti, = '

etc. We will extend the results of [7] to obtain necessary and sufficient
conditions for the well posedness of (11). To see the relationship be- i
tween the new conditions and the conditions obtained in [7], we also Cl A ™
define a concept of mode well posedness: the existence of solutioR{Rynich €7 is thekth row of C7, and eacth?, (k = 1, ..., ¢;) is
a unique mode. We will show that the conditions of [7] in the multiplghe maximal value of the rank such @y’ .. .LTJ;CT]T has a row-full
cases correspond to a characterization for mode well posedness. ok ' '

Let us first recall the following definitions. Denote

Definition 1: If, for a given initial statez(to), =(¢) satisfies on

i
[to, to + &) for somes > 0 Sl = {2|T/z =0} S = m s/

i1 j=1
x(t) = 2(t —1—/ flx(r))dr 12
" (to) to (™) (12) For anyi # j, define
wheref (z) is the vector field given by the right-hand side of (11), and Kij = [ker(Af — A7).
there is no left-accumulation point of event times [7]{an to + 6), k

thena(¢) is said to be a continuous-state solution of the system (11) onTheorem 3: The system (11) is C-well posed @' if and only if

[to, to + &) in the sense of Carathéodory or simply a C solution. m
Definition 2: The system (11) is said to be C-well posed if there U S, =R" (15)

exists a unique solution of (11) ¢f, oc) in the sense of Carathéodory i=1

for every initial statero € R”. S

iNS; C Kij,  foralli # j. (16)
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Proof: Follow similarlinesin [7, proof of Lemma 2.3], (13) holds  Clearly, iii) implies ii). We only need to show that ii) implies that
if and only if both the pairgC, 4,) and(C, A-) are observable.

. _ Denote
Tlag =0, -, TPizg = 0

. m; = rank T,
or, equivalently

fori = 1, 2. Without loss of generality, assume, > m-, and denote

o € Si. Ta, asTa, = [T4,;. T4, ,]" with thems x n-dimensional matrix
So iii.a) of Lemma 2 holds if and only if (15) holds. T4y andrankTay; = mo. S
Note also that (14) holds if and only if From [7, Lemma 3.4]5]" U S;” = R" is equivalent to
Aimo = Ajag, Alwg = A?mo, ooy AFpg = A?mo, SHNS, ={z € R"|Tay1e =0, Tapza = 0}.
or, equivalently Therefore, i) implies that
20 € Kij. {x € R"|Taj12 =0, Ta,2x = 0} = {0}. (29)

Thisis the case only ifankT 4,1 = n, since otherwise, there is always

So iii.b) of Lemma 2 holds if and only if (16) holds. ]nonzero solution to

For a bimodal case, the aformentioned result reduces to [7, Th. 5%
Note that conditions in Theorem 3 differ from those of [7, Th. 6.1] in Taz=0

(16). There it was required that the intersection is zero. We will show

that this type of condition corresponds to another weak concept.  violating (19).
Definition 4: A C solutionz(#) is said to be in modéat 7, if there Thus, necessarilyp, = mi1 = n, both the pairgC, 4;) and

exists a5 > 0 such that (C, A,) are observable.
Cla(t) = 0,..., CPiu(t) = 0
fort € [r, 7+ 6). IV. ALGORITHM
From this definition, a solution is in modeat an instant, then it is To check conditions (15) and (16), if we denoteG@s the matrix
in mode: at all instants in a time intervgh, = + 6). consisting of the first rows of the matricég, ..., C¢, then neces-

Definition 5: The system (11) is called M-well posed if any nonzergarily,
C solution is in one and only one mode. m
To characterize M-well posedness, we have the following result. U P(Ci1) =R", P(Ca) N P(Cj1) C Kij, or C ker CV
Lemma 3: If (11) is C-well posed, then a C solution starting from =1
o is in modei if and only if zq € S;. (20)
Proof: (Sufficiency) Ifzo € S;, then (13) holds fot € [0, 6).  o5r some nonzero vecta (") .

When the system (11) is C-well posed ‘o is asolutionto (11) and e note that JI”, P(Ci1) = R” holds if and only if for each row
in mode:. i .

C1!]:17*pt
(Necessity) If the system is C-well posed and a solution starting from
xo is in modei, then smooth continuation is possible in ttie mode, " ; .
that is, (13) holds fot € [0, §). Along the same lines as in [7, proof U P(Ch) =R
of Lemma 2.3]z0 € S;. =t
Immediately, we have the following characterization. or, equivalently
Theorem 4: The system (11) is M-well posed G&" if and only if .
Usi =r" 17) () Pr(=ch=0. (1)
=1 =1
SinS; ={0}, foralli#j. (18)  we can then us8ubConeo checkP(Cii) N P(C;1) C K:; and
For bimodal systems with a single criterion, the above result can BéptyCondo check (21). We will call these the primary checks of the
simplified. As in [7], we define, foi = 1, 2 conditions (15) and (16). _
S = {#Ta,z = 0} If P(C;1)N P(C;1) C ker CV, we define
S ={2|Ta,x 20} 551112 = S Nker CV
in which T4, is the observability matrix ofC, A;). then, (15) and (16) imply that
Theorem 5: For a bimodal system with a single criterion, the fol- " . , . .
lowing statements are equivalent. U85 =kerc™ 858 €Kiy Nker O
i) The system (11) is M-well posed. k=1
i) SfuUS, =R"andSF NS, =0. We can identify the subspager C'(") with R* with a reduced
iii) Both the pairs(C, A;) and(C, A2) are observable, anf” U  dimension") < n. Itis easy to verify tha$, . is lexicographic cone
S, = R" - on the subspac&”""’ . Denote
iv) Both the pairg C, A1) and(C, A) are observable, a n . .
) S = O.p 2 Ay andic: ) K = Kin, ker ¢
v) Both the pairs(C, 4,) and(C, A:) are observable, and thethen, we see thatforeach=1, ..., m,j=1,....m
system (11) is C-well posed. o ™
Proof: Following the same line as [7, proof of Lemma 2.3], the U Sfjxl =R" (22)
k=1

equivalence of i) and ii) is easily proved. The equivalence of iii), iv).

and v) is contained in [7, Th. 4.1]. sHinsy) c ki, (23)
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Equations (22) and (23) take the same form as (15) and (16), but on & can be verified that the system is C-well posed. To check this via
subspace of a reduced dimension. So, we can repeat the whole protiesalgorithm, we illustrate the first step in the following, further steps

to give an algorithm to check (15) and (16). can be carried out in the similar way.
Foreachh = 1, ..., m,j = 1, ..., m, the set of equations (22) We have
and (23) is called a Fourier—Motzkin reduction of the set of equations
(15) and (16). Cyy = {1 00 —1} Cyr — {—1 0 0 1}
We remark that the general procedure outlined above is similar in 0 00 1 0 0 01
spirit to the one given in [7]. There are two differences however. The -1 0 0 1
first difference is that we have a subroutiBebConeo check, e.g., Car = { 00 0 _1}

P(Ci)N P(Cj1) C K,j, even wheriC;; # 0. In [7], a degenerate

LP problem was formulated for the case whén = {0}. The second and we need to check (21). Equation (21) is equivalent to
difference is exactly the avoidance of the degenerate LP problem. The

Fourier—Motzkin elimination is noticeably more efficient in the highly (=21 4+24>0, =24 >0, 2y —2q >0, 24 >0} =0.
degenerate cases [5].

PerformingEmptyConeone sees that it is indeed the case.

Algorithm Since P(C11) N P(Cs1) C {x|#1 — xa = 0}. Now, assuming
Step 1: Perform the primary checks for ry — X4 :(),constructS,Sj and moving to the next step, etc.
(15) and (16). If one of these checks
can not pass, then stop. V. CONCLUSION

Denote as JFAM; the collection of all

Fourier-Motzkin reductions of (15) and In this note, the results of [7] were generalized to piecewise-linear

(16). systems with.r_nultiple modes anc_i multiple ceiterig. It was also shown
Step k: For each member of FMj_., per- that the conditions as presented in [7] for the multiple case cgrres_pond

form the primary checks. If one of these to aweak concept of the sojgalled “mode well posedness” (:.1ef|n.ed inthe

checks can not pass, then stop. note. To check these conditions, we presented new algorithmic proce-
Denote as JF.M; the collection of all dyres by making use of the famous Fourier—Motzkin elimination tech-

Fourier—Motzkin reductions of all mem- nique.

bers of FM;j_;. It should be pointed out that the algorith@sbConendEmptyCone

and, thus, the algorithm to check the necessary and sufficient conditions
' N grow very fast in terms of the number of matrices of reduced dimen-
If the algorithm proceeds to stepax(g;), then the conditions of sjons. Thoughitis not the purpose of this note, to improve the efficiency

Theorem 3 hold, and (11) is C-well posed. of the algorithms should be a topic of future research. Existing litera-
Example: Consider the following three-modal system: ture on the numerical efficiency of the Fourier—Motzkin procedures and
] " the double description method can be found in, e.g., [1] and [5].
T =Ax, (v1 — 24, x3)" =0, x4 >0
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