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Well Posedness of Piecewise-Linear Systems With Multiple
Modes and Multiple Criteria

X. Xia

Abstract—In this note, the results of a previous paper are generalized to
obtain necessary and sufficient conditions for the well posedness of piece-
wise-linear systems with multiple modes and multiple criteria. To check the
necessary and sufficient conditions, we present new algorithmic procedures
by making use of the famous Fourier–Motzkin elimination technique.

Index Terms—Hybrid systems, lexicographic inequalities, piece-
wise-linear systems, well posedness.

I. INTRODUCTION

An important class of hybrid systems is the one described by piece-
wise-linear systems [11], [2], [8], [10], [7]. A fundamental issue of
piecewise-linear systems is the problem of existence and uniqueness
of solutions, or the well-posedness problem [12].

In [7] and [6], the problems of well posedness and feedback well
posedness are investigated under the definition of Carathéodory solu-
tions. For systems with two modes, or bimodal systems, both the prob-
lems of well posedness and feedback well posedness are completely
characterized for the case of a single criterion. For bimodal systems
with multiple criteria, simple necessary and sufficient conditions are
also found for the well posedness problem in [7]. For a special case of
multiple modes, a set of necessary and sufficient conditions are given
for the well-posedness problem under the assumption that each mode
is observable in [7]. To check the conditions, [7] proposed an algorithm
based on a linear programming argument. However, it is noted that the
linear programming (LP) problem as formulated there is degenerate.

In this note, we generalize the above results about well-posedness of
piecewise-linear systems to the more general case. Necessary and suf-
ficient conditions are derived for the well-posedness problem of piece-
wise-linear systems with multiple modes and multiple criteria. We also
define a concept of mode well posedness: the existence of solution in a
unique mode, and show that the characterization of [7] in the multiple
cases is for mode well posedness. Another feature of the note is the
approach to check these necessary and sufficient conditions. Instead
of a linear programming approach, we present an approach by making
use of the technique of the Fourier–Motzkin elimination, which is well
known in linear optimization [3]. Finally, algorithmic procedures are
worked out.

The organization of the note is as follows. In Section II, the
Fourier–Motzkin elimination is introduced to study some important
properties of polyhedral cones. Section III is devoted to developing
necessary and sufficient conditions for well posedness. An algorithm
are given in Section IV. Section V is the conclusion.

We will make extensive use of the notations and results of [7]. In par-
ticular, we will use the following notation: for lexicographic inequali-
ties ofx 2 Rn, if for somei, xj = 0 (j = 1; 2; . . . ; i � 1), while
xi > 0(<0), we denote it byx � (�)0.
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II. POLYHEDRAL CONES

First, two properties of polyhedral cones are investigated.
Problem One:For a given subspaceN � Rn, is apolyhedral cone

P = P (T ) = fxjx 2 Rn; Tx � 0g for somem � n matrix T
contained inN ?

Problem Two: Given anm � n matrix T , is thepolyhedral cone
P o = P o(T ) = fxjx 2 Rn; Tx > 0g = ;?

To solve these problems, we make use of the Fourier–Motzkin elim-
ination procedures [4], [9], [3].

For the first problem, denoter = codimN = n�dimN , and find a
matrixC1 2 R

r�n such thatN = kerC1, and letC2 2 R
(n�r)�n be

such that(CT
1 ; C

T
2 )

T is a nonsingular matrix, and define a coordinate
transformation by

z =
C1

C2
x = Cx

thenP (T ) � N is equivalent to

fz 2 RnjAz � 0g � fz 2 Rnjz1 = 0; . . . ; zr = 0g (1)

in whichA = TC�1.
DenoteAi theith column ofA, andAi theith row ofA.
Lemma 1: If P (T ) � N then

1) for eachi 2 f1; . . . ; rg, at least one element ofAi is positive,
and one element ofAi is negative;

2) for eachi 2 fr + 1; . . . ; ng, elements ofAi cannot be all
positive or negative.

Proof: 1) By contradiction. Without loss of generality, assume
that all elements ofA1 are positive, then(1; 0; . . . ; 0)T belongs to
the set at the left-hand side of the inclusion (1), but not the set at the
right-hand side. So,P (T ) 6� N .

2) Also by contradiction. Assume, without loss of generality, all
elements ofAn are positive, then choose a number� such that

� � � max
f1�i�mg

ai1

ain

then it is easy to verify that(1; 0; � � � ; 0; �)T 2 P (A), but does not
belong to the right-hand side of (1).

Fourier–Motzkin Elimination: Denote

Q = fkjakn < 0g P = fkjakn > 0g Z = fkjakn = 0g

and

~m = jZj + jQ� P j

in which, denotingj � j for the size of a finite set�.
Define matrixB, called a Fourier–Motzkin elimination ofA, as

B = (bij) 2 R ~m�(n�1)

in the following way.

• For the firstjZj rows

bkj = ak j

for j = 1; . . . ; n� 1, and some (one and only one)k0 2 Z.
• For the lastjP � Qj rows

bij = ai j �
ai n

ak n

ak j

for j = 1; . . . ; n � 1, and some (one and only one) index set
(i0; k0) 2 P � Q.

It is noted that the Fourier–Motzkin elimination of a matrixA does
not exist if and only ifZ = P = ; orZ = Q = ;, i.e., (2) in Lemma
1 is violated.
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Theorem 1:

i) If r < n, (1) holds if and only if the Fourier–Motzkin elimina-
tion B of A exists and

fz 2 Rn�1jBz � 0g � fz 2 Rn�1jz1 = 0; . . . ; zr = 0g: (2)

ii) If r = n, (1) holds if and only ifAn has both positive and
negative elements and

fz 2 Rn�1jBz � 0g � fz 2 Rn�1jz1 = 0; . . . ; zn�1 = 0g: (3)

Proof: (Necessity): Caser < n: The existence of the
Fourier–Motzkin eliminationB of A is implied by Lemma 1.

For any(z1; . . . ; zn�1)T 2 fz 2 Rn�1jBz � 0g, by the con-
struction of the matrixB, one has

max
i2P

ai1z1 + � � �+ ain�1zn�1

�ain
� min

i2Q

ai1z1 + � � �+ ain�1zn�1

�ain
:

Choose azn such that

max
i2P

ai1z1 + � � �+ ain�1zn�1

�ain
� zn

� min
i2Q

ai1z1 + � � �+ ain�1zn�1

�ain

then it is easy to see that(z1; . . . ; zn)T 2 fz 2 RnjAz � 0g. So by
(1), (z1; . . . ; zr)T = 0 , i.e.,(z1; . . . ; zn�1)

T 2 fz 2 Rn�1jz1 =
0; . . . ; zr = 0g.

That is, (2) holds.
Caser = n: By Lemma 1,An has both positive and negative ele-

ments.
Similar to the proof of (2), we can prove that (3) holds.
(Sufficiency): Caser = n: By contradiction. Assume thatz =

(z1; . . . ; zn)
T 2 fzjAz � 0g, but (z1; . . . ; zn)T 6= 0. Then, for

all k 2 Q,

ak1z1 + � � �+ akn�1zn�1 + aknzn � 0: (4)

Define

zn = min
k2Q

ak1z1 + � � �+ akn�1zn�1

�akn
(5)

then by (4) and the fact thatakns are negative, one haszn � 0.
Definez = (z1; . . . ; zn�1; zn)

T , then by (4) and (5), it is verified
thatAkz � 0, for k 2 Q, and there is an indexk 2 Q such that
A
k
z = 0. That is,k 2 Q is chosen such that

a
k1
z1 + � � �+ a

kn�1
zn�1 + a

kn
zn = 0 (6)

and for all otherk 2 Q

ak1z1 + � � �+ akn�1zn�1

�akn
�

a
k1
z1 + � � �+ a

kn�1
zn�1

�a
kn

: (7)

One claims that

(z1; . . . ; zn�1)
T 2 fz 2 Rn�1jBz � 0g:

As a matter of fact, for the firstjZj rows ofB, obviously

bi1z1 + � � �+ bin�1zn�1 � 0: (8)

From (4) and (6), one knows thatakn(zn � zn) � 0, or

zn � zn: (9)

Now, for each of the lastjP �Qj rows ofB, since there is a (unique)
index set(i0; k0) 2 P � Q such that

bi1z1 + � � �+ bin�1zn�1

= ai 1�
ai n

ak n

ak 1 z1+� � �+ ai n�1�
ai n

ak n

ak n�1 zn�1

= ai 1z1+� � �+ai n�1zn�1�
ai n

ak n

(ak 1z1+� � �+ak n�1zn�1)

� ai 1z1+� � �+ai n�1zn�1�
ai n

a
kn

a
k1
z1+� � �+a

kn�1
zn�1

= ai 1z1 + � � �+ ai n�1zn�1 + ai nzn

� ai 1z1 + � � �+ ai n�1zn�1 + ai nzn � 0: (10)

Combining (8) and (10), one has(z1; . . . ; zn�1)
T 2 fz 2

Rn�1jBz � 0g.
Finally, from (4), it is easy to see that(z1; . . . ; zn�1)

T is not zero;
a contradiction.

Caser < n: For any(z1; . . . ; zn)T 2 P (A), from the construction
of B, it is concluded that(z1; . . . ; zn�1)

T 2 P (B). So from (2),
z1 = 0; . . . ; zr = 0. That is, (1) holds.

Now, it is ready to give an algorithm to check whetherP (T ) � N
for a matrixT 2 Rm�n and subspace ofRn of co-dimensionr.

Algorithm SubCone
Step 1: Find a nonsingular matrix

such that . De-
note , and

Check: all elements of the last column
of are positive or negative. If yes,
stop.

Step ( ): Find the
Fourier–Motzkin elimination of as

.
Check: all elements of the last column

of are positive or negative. If yes,
stop!

Step ( ): Find the
Fourier–Motzkin elimination of as

.
Check: the last column of has both

negative element and positive elements.
If not, stop!

If it passes all the steps of the algorithmSubCone,then one concludes
thatP (T ) � N .

We now turn to the second problem. Denote the Fourier–Motzkin
elimination ofT by F (T ).

Theorem 2: P o(T ) = ; if and only if the elements of the last
column ofT are not all positive nor all negative, andP o(F (T )) = ;.

Proof: (Necessity) If all elements of the last column ofT are
positive (negative), then(0; . . . ; 0; 1)T ((0; . . . ; 0; �1)T ) belongs
to P o(T ). If we denote in the Fourier–Motzkin procedure asP; Q,
andZ the sets of row indices of the elements of the last column with
positive, negative and zero elements, respectively, then there are only
the following three cases:

I) P 6= ; andQ 6= ;;
II) P = ; andZ 6= ;;
III) Q = ; andZ 6= ;.
In case II), the Fourier–Motzkin eliminationF (T ) is defined by rows

in Z of the matrixT . If (x1; . . . ; xn�1)
T 2 P o(F (T )), choose

xn < min
i2Q

ai1x1 + � � �+ ain�1xn�1

�ain
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then it is easy to see that(x1; . . . ; xn)T 2 P (T ). A contradiction.
Similarly, in case III),P o(F (T )) = ;.
In case I), If(x1; . . . ; xn�1)T 2 P o(F (T )), choosexn satisfying

max
i2P

ai1x1 + � � �+ ain�1xn�1

�ain
<xn

< min
i2Q

ai1x1 + � � �+ ain�1xn�1

�ain

which exists, by the construction ofF (T ). Then, it is easy to see that
(x1; . . . ; xn)

T 2 P (T ). A contradiction.
(Sufficiency) Again, there are only the aforementioned three cases.

In cases II) and III),P o(F (T )) = ; impliesP o(T ) = ;.
In case I), if(x1; . . . ; xn)T 2 P o(T ), then by the construction of

F (T ), (x1; . . . ; xn�1)T 2 P o(F (T )). So again,P o(T ) = ;.
To checkP o(T ) = ;, we propose the following algorithm.

Algorithm EmptyCone
Step ( ): Check whether the

elements of the last column of are all
positive or all negative, if yes, then
stop.

and goto Step

If it passes all steps of the algorithmEmptyCone,thenP o(T ) = ;.
Remark 1: Both algorithms can be improved by arguments of ex-

treme rays, as done in the dual algorithms of double description [5].

III. N ECESSARY ANDSUFFICIENT CONDITIONS

Consider piecewise-linear systems described bym modes, and each
mode is defined by

_x = Aix; whenC1

i x � 0; . . . ; Cp
i x � 0 (11)

for i = 1; . . . ; m, in whichx 2 Rn, Ai ’s aren � n matrices,Cj
i is

a qi � n matrix, for i = 1; . . . ; m andj = 1; . . . ; pi.
Whenm = 2, the system (11) is called bimodal. For a bimodal

system, ifp1 = 1; p2 = 1; q1 = 1; q2 = 1, andC = C1

1 = �C1

2 ,
then the system is called a bimodal system with a single criterion.

Note that the form of (11) already appeared in the discussions of the
note [7]. However, necessary and sufficient conditions were presented
for the case of bimodal case and a special case with multiple modes and
multiple criteria. In (11), the creiteria are also defined bylexicographic
inequalities,and no observability condition is imposed for(Ai; C

j
i ),

etc. We will extend the results of [7] to obtain necessary and sufficient
conditions for the well posedness of (11). To see the relationship be-
tween the new conditions and the conditions obtained in [7], we also
define a concept of mode well posedness: the existence of solution in
a unique mode. We will show that the conditions of [7] in the multiple
cases correspond to a characterization for mode well posedness.

Let us first recall the following definitions.
Definition 1: If, for a given initial statex(t0), x(t) satisfies on

[t0; t0 + �) for some� > 0

x(t) = x(t0) +
t

t

f(x(� ))d� (12)

wheref(x) is the vector field given by the right-hand side of (11), and
there is no left-accumulation point of event times [7] on[t0; t0 + �),
thenx(t) is said to be a continuous-state solution of the system (11) on
[t0; t0 + �) in the sense of Carathéodory or simply a C solution.

Definition 2: The system (11) is said to be C-well posed if there
exists a unique solution of (11) on[0; 1) in the sense of Carathéodory
for every initial statex0 2 Rn.

Definition 3: LetS be a subset ofRn. If for the initial statex0 there
exists an� > 0 such thatx(t) 2 S for all t 2 [0; �], then we say that
the system has the smooth continuation property atx0 with respect to
S . Moreover, if from allx0 2 S smooth continuation is possible with
respect toS , then the system is said to have the smooth continuation
property with respect toS .

[7, Lemma 2.1] is easily generalized.
Lemma 2: The following statements are equivalent.

i) The system (11) is C-well posed.
ii) For the system (11), from every initial statex0 2 Rn, smooth

continuation is possible in one of them modes, in other words,
with respect to

fx 2 RnjC1

i x � 0; . . . ; Cp
i x � 0g

except for the cases that solutions in any two modes are the same
in some time interval.

iii) For every initial statex0 2 Rn, the following hold.

a) There is ani 2 f1; . . . ; mg and� > 0 such that

C
1

i e
A t

x0 � 0; . . . ; Cp

i e
A t

x0 � 0 (13)

for t 2 [0; �).
b) For anyi 6= j, if

C
1

i e
A t

x0 � 0; . . . ; Cp
i e

A t
x0 � 0

C
1

j e
A t

x0 � 0; . . . ; C
p

j e
A t

x0 � 0

for t 2 [0; �), then

e
A t

x0 = e
A t

x0 (14)

for t 2 [0; �).
Proof: The equivalence of i) and ii) can be worked out along the

same lines as in [7, proof of Lemma 2.1]. Condition iii) is just a restate-
ment of ii).

Denote, fori = 1; . . . ; m; j = 1; . . . ; pi

T
j
i =

T
j
i1

...

T
j
iq

where, fork = 1; . . . ; qi

T
j

ik =

C
j

ik

C
j

ikAi

...

C
j

ikA
h �1

i

in whichCj

ik is thekth row ofCj
i , and eachhjik(k = 1; . . . ; qi) is

the maximal value of the rank such that[T jT
i1 . . .T jT

ik ]T has a row-full
rank.

Denote

Sji = fxjT j
i x � 0g Si =

p

j=1

Sji :

For anyi 6= j, define

Kij =
k

ker(Ak
i �A

k
j ):

Theorem 3: The system (11) is C-well posed onRn if and only if
m

i=1

Si = Rn (15)

Si \ Sj � Kij ; for all i 6= j: (16)
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Proof: Follow similar lines in [7, proof of Lemma 2.3], (13) holds
if and only if

T
1

i x0 � 0; � � � ; T p
i x0 � 0

or, equivalently

x0 2 Si:

So iii.a) of Lemma 2 holds if and only if (15) holds.
Note also that (14) holds if and only if

Aix0 = Ajx0; A
2
ix0 = A

2
jx0; . . . ; A

k
i x0 = A

k
j x0; . . .

or, equivalently

x0 2 Kij :

So iii.b) of Lemma 2 holds if and only if (16) holds.
For a bimodal case, the aformentioned result reduces to [7, Th. 5.1].
Note that conditions in Theorem 3 differ from those of [7, Th. 6.1] in

(16). There it was required that the intersection is zero. We will show
that this type of condition corresponds to another weak concept.

Definition 4: A C solutionx(t) is said to be in modei at� , if there
exists a� > 0 such that

C
1
i x(t) � 0; . . . ; Cp

i x(t) � 0

for t 2 [�; � + �).
From this definition, a solution is in modei at an instant� , then it is

in modei at all instants in a time interval[�; � + �).
Definition 5: The system (11) is called M-well posed if any nonzero

C solution is in one and only one mode.
To characterize M-well posedness, we have the following result.
Lemma 3: If (11) is C-well posed, then a C solution starting from

x0 is in modei if and only if x0 2 Si.
Proof: (Sufficiency) If x0 2 Si, then (13) holds fort 2 [0; �).

When the system (11) is C-well posed,eA tx0 is a solution to (11) and
in modei.

(Necessity) If the system is C-well posed and a solution starting from
x0 is in modei, then smooth continuation is possible in theith mode,
that is, (13) holds fort 2 [0; �). Along the same lines as in [7, proof
of Lemma 2.3],x0 2 Si.

Immediately, we have the following characterization.
Theorem 4: The system (11) is M-well posed onRn if and only if

m

i=1

Si =Rn (17)

Si \ Sj = f0g; for all i 6= j: (18)

For bimodal systems with a single criterion, the above result can be
simplified. As in [7], we define, fori = 1; 2

S+i = fxjTA x � 0g

S�i = fxjTA x � 0g

in whichTA is the observability matrix of(C; Ai).
Theorem 5: For a bimodal system with a single criterion, the fol-

lowing statements are equivalent.

i) The system (11) is M-well posed.
ii) S+1 [ S�2 = Rn andS+1 \ S�2 = 0.

iii) Both the pairs(C; A1) and(C; A2) are observable, andS+1 [
S�2 = Rn.

iv) Both the pairs(C; A1) and(C; A2) are observable, andS+1 \
S�1 = 0.

v) Both the pairs(C; A1) and (C; A2) are observable, and the
system (11) is C-well posed.

Proof: Following the same line as [7, proof of Lemma 2.3], the
equivalence of i) and ii) is easily proved. The equivalence of iii), iv).
and v) is contained in [7, Th. 4.1].

Clearly, iii) implies ii). We only need to show that ii) implies that
both the pairs(C; A1) and(C; A2) are observable.

Denote

mi = rankTA

for i = 1; 2. Without loss of generality, assumem1 � m2, and denote
TA asTA = [T T

A 1; T
T
A 2]

T with them2 � n-dimensional matrix
TA 1 andrankTA 1 = m2.

From [7, Lemma 3.4],S+1 [ S�2 = Rn is equivalent to

S+1 \ S�2 = fx 2 RnjTA 1x = 0; TA 2x � 0g:

Therefore, i) implies that

fx 2 RnjTA 1x = 0; TA 2x � 0g = f0g: (19)

This is the case only ifrankTA 1 = n, since otherwise, there is always
a nonzero solution to

TA x = 0

violating (19).
Thus, necessarily,m2 = m1 = n, both the pairs(C; A1) and

(C; A2) are observable.

IV. A LGORITHM

To check conditions (15) and (16), if we denote asCi1 the matrix
consisting of the first rows of the matricesC1

i ; . . . ; C
p
i , then neces-

sarily,
m

i=1

P (Ci1) = Rn
; P (Ci1)\ P (Cj1) � Kij ; or � kerC(1)

(20)

for some nonzero vectorC(1).
We note that m

i=1 P (Ci1) = Rn holds if and only if for each row
C
j
i1, j = 1; . . . ; pi

m

i=1

P (Cj
i1) = Rn

or, equivalently

m

i=1

P
o(�Cj

i1) = ;: (21)

We can then useSubConeto checkP (Ci1) \ P (Cj1) � Kij and
EmptyConeto check (21). We will call these the primary checks of the
conditions (15) and (16).

If P (Ci1) \ P (Cj1) � kerC(1), we define

S
(1)
ijk = Sk \ kerC(1)

then, (15) and (16) imply that
m

k=1

S
(1)
ijk = kerC(1) S

(1)
ijk \ S

(1)
ijl � Kkl \ kerC(1)

:

We can identify the subspacekerC(1) with Rn with a reduced
dimensionn(1) < n. It is easy to verify thatSijk is lexicographic cone
on the subspaceRn . Denote

K
(1)
ijkl = Kkl\; kerC

(1)

then, we see that for eachi = 1; . . . ; m, j = 1; . . . ; m
m

k=1

S
(1)
ijk = Rn (22)

S
(1)
ijk \ S

(1)
ijl � K

(1)
ijkl: (23)



1720 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

Equations (22) and (23) take the same form as (15) and (16), but on a
subspace of a reduced dimension. So, we can repeat the whole process
to give an algorithm to check (15) and (16).

For eachi = 1; . . . ; m, j = 1; . . . ; m, the set of equations (22)
and (23) is called a Fourier–Motzkin reduction of the set of equations
(15) and (16).

We remark that the general procedure outlined above is similar in
spirit to the one given in [7]. There are two differences however. The
first difference is that we have a subroutineSubConeto check, e.g.,
P (Ci1) \ P (Cj1) � Kij , even whenKij 6= 0. In [7], a degenerate
LP problem was formulated for the case whenKij = f0g. The second
difference is exactly the avoidance of the degenerate LP problem. The
Fourier–Motzkin elimination is noticeably more efficient in the highly
degenerate cases [5].

Algorithm
Step 1: Perform the primary checks for

(15) and (16). If one of these checks
can not pass, then stop.

Denote as the collection of all
Fourier–Motzkin reductions of (15) and
(16).

Step : For each member of , per-
form the primary checks. If one of these
checks can not pass, then stop.

Denote as the collection of all
Fourier–Motzkin reductions of all mem-
bers of .

If the algorithm proceeds to stepmax(qi), then the conditions of
Theorem 3 hold, and (11) is C-well posed.

Example: Consider the following three-modal system:

_x =A1x; (x1 � x4; x3)
T � 0; x4 � 0

_x =A2x; �x1 + x4 � 0; x4 � 0

_x =A3x; �x1 + x4 � 0; �x4 � 0

in which

A1 =

0 1 0 1

1 1 0 �1

0 0 1 0

0 0 0 1

A2 =

0 1 0 1

1 2 0 �1

1 1 1 �1

0 0 0 1

A3 =

0 1 0 1

1 2 0 �1

1 1 1 �1

0 0 0 �1

:

It can be calculated that

S1 = fxj(x1 � x4; x2; x3)
T � 0g \ fxjx4 � 0g

S2 = fxj�(x1 � x4; x2)
T � 0g \ fxjx4 � 0g

S3 = fxj�(x1 � x4; x2)
T � 0g \ fxj�x4 � 0g

and

K12 = fxjx1 � x4 = 0; x2 = 0g

K13 = fxjx1 � x4 = 0; x2 = 0; x4 = 0g

K23 = fxjx4 = 0g:

It can be verified that the system is C-well posed. To check this via
the algorithm, we illustrate the first step in the following, further steps
can be carried out in the similar way.

We have

C11 =
1 0 0 �1

0 0 0 1
C21 =

�1 0 0 1

0 0 0 1

C31 =
�1 0 0 1

0 0 0 �1

and we need to check (21). Equation (21) is equivalent to

f�x1 + x4 > 0; �x4 > 0; x1 � x4 > 0; x4 > 0g = ;:

PerformingEmptyCone, one sees that it is indeed the case.
SinceP (C11) \ P (C21) � fxjx1 � x4 = 0g. Now, assuming

x1 � x4 = 0, constructS(1)
kij and moving to the next step, etc.

V. CONCLUSION

In this note, the results of [7] were generalized to piecewise-linear
systems with multiple modes and multiple ceiteria. It was also shown
that the conditions as presented in [7] for the multiple case correspond
to a weak concept of the so-called “mode well posedness” defined in the
note. To check these conditions, we presented new algorithmic proce-
dures by making use of the famous Fourier–Motzkin elimination tech-
nique.

It should be pointed out that the algorithmsSubConeandEmptyCone
and, thus, the algorithm to check the necessary and sufficient conditions
grow very fast in terms of the number of matrices of reduced dimen-
sions. Though it is not the purpose of this note, to improve the efficiency
of the algorithms should be a topic of future research. Existing litera-
ture on the numerical efficiency of the Fourier–Motzkin procedures and
the double description method can be found in, e.g., [1] and [5].
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