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Simulations results show that the proposed scheme can be effec-
tively used in closed loop, and that the combined effect of discretization
and measurement noise preserve the convergence properties which are
demonstrated in the continuous time domain.
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Identifiability of Nonlinear Systems With Application
to HIV/AIDS Models

X. Xia and C. H. Moog

Abstract—In this note, we investigate different concepts of nonlinear
identifiability in the generic sense. We work in the linear algebraic
framework. Necessary and sufficient conditions are found for geometrical
identifiability, algebraic identifiability and identifiability with known
initial conditions. Relationships between different concepts are character-
ized. Constructive procedures are worked out for both generic geometrical
and algebraic identifiability of nonlinear systems. As an application of
the theory developed, we study the identifiability properties of a four
dimensional model of HIV/AIDS. The questions answered in this study
include the minimal number of measurement of the variables for a
complete determination of all parameters and the best period of time to
make such measurements. This information will be useful in formulating
guidelines for the clinical practice.

Index Terms—AIDS, algebraic framework, HIV, identifiability, non-
linear systems.

I. INTRODUCTION

Identifiability of nonlinear systems has been studied in different con-
texts. The first systematic treatment of the topic was probablyin [20].
In that paper, the authors investigated the structural properties, in par-
ticular, the one-to-one property, of the map from the parameter to be
identified and the measured output of the system. The question under
investigation was whether or not it was possible to distinguish dif-
ferent sets of parameters from the measurement of the output. The
one-to-one property was shown to be a characterization of such dis-
tinguishability of parameters. The authors worked in thedifferential
geometricalframework which was very popular around the time of the
publication of the note. So, the results carry a strong differential geo-
metrical flavor. Nevertheless, necessary and sufficient conditions were
only found for some special cases of regularity.

The usefulness of the identifiability lies in the practical requirement
that parameters can be expressed as functions of the known quantities
of the system, such as input and output. In this aspect, an algebraic
definition, its relationship to observability, and algorithmic procedures
based on differential algebraic polynomial systems were rigourously
studied in [5], [7], [14]. The paper by Ljung and Glad [14] is trendset-
ting. Most of the later developments apply to polynomial systems and
are of differential algebraic in nature.

It has long been recognized that initial conditions play a role in iden-
tifying the parameters [5], [20], [14]. As indicated in [14], the depen-
dence of the output on the initial state is not a simple algebraic relation.
The relationship between the geometric identifiability which accom-
modates the initial conditions as defined in [20] and the algebraic one
is not clear, as many other studies of nonlinear system properties,e.g.,
invertibility [6], [9].
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A recent effort to include the effect of known initial conditions into
identifiability is [4] where a slightly different differential algebraic al-
gorithm was suggested to present a characterization of polynomial sys-
tems without input. Little systematic study exists, however. The rela-
tionship with the algebraic and the geometric ones has not been clear.

In this note, we will show the following. 1) In a generic sense, the
structural identifiability is equivalent to identifiability with known ini-
tial conditions, i.e., the parameters can be determined by the known
initial conditions, the available input and output, if and only if, the map
between the parameter and the output is one-to-one. We also obtain nec-
essary and sufficient conditions for all three kinds of identifiability of
nonlinear systems. 2) The relationship between the structural concept
and the algebraic concept is completely characterized. 3) Identifiability
with partially known initial conditions is also easily characterized.

Another distinct feature of the note is that both the structural con-
cept and the algebraic one are dealt with in a single framework: the
linear algebraic framework [2]. Constructive procedures are worked
out for both geometric and algebraic identifiability of nonlinear sys-
tems. Though we present generic results, the results can also be used
to check the singularities of the system for parameter identification.

As an application, we study the identifiability properties of the
HIV/AIDS models. We will show in this note that the theorems
developed in this note lend themselves to characterizations of whether
all the parameters in the 4 D HIV/AIDS model are determinable from
the measurement ofCD4+ T cells and virus load, and if not, what
else one has to measure. Another question answered by this study
is the minimal number of measurement of the variables that a first
estimation of all ten parameters is possible. This gives guidelines for
the clinical practice.

The organization of the note is as follows. In Section II, we review
different concepts of nonlinear identifiability. Algebraic characteriza-
tions are given in Section III. Section IV is devoted to the calculation
procedures. Section V contains our study of the identifiability proper-
ties of the HIV/AIDS model. Some concluding remarks are given in
Section VI.

II. CONCEPTS

Consider a nonlinear system

�� :
_x = f(x; �; u); x(0; �) = x0;

y = h(x; �; u)
(1)

wherex 2 Rn, u 2 Rm andy 2 Rp are the state, input, and output
variables of the system. Assume that

rank
@h(x; �; u)

@x
= p: (2)

� is the parameter to be identified.� is assumed to belong toP which
is a simply connected open subset ofRq . The functionsf(x; �; u)
andh(x; �; u) are meromorphic functions on a simply connected open
subsetM�P�U ofRn�Rq�Rm. Moreover, without loss of gen-
erality, x0 is assumed to be independent of� and not an equilibrium
point of the system. We do not assume there are model uncertainties.

An input functionu(t) : [0; T ]! U , whereU is a simply connected
open subset ofRm, is called an admissible input (on[0; T ]) if the dif-
ferential equation in (1) admits a unique (local) solution. For any initial
conditionx0 and an admissible inputu(t) on [0; T ], there exists, on a
possibly smaller time interval,[0; �T ], �T � T , a parameterized solution
x(t; �; x0; u). The corresponding output is denoted byy(t; �; x0; u).

A classical definition of identifiability can be found in [20].
Definition 1: The system�� is said to bex0 identifiable at�

through an admissible inputu (on [0; T ]) if there exists an open

set P0 � P containing� such that for any two�1, �2 2 P0,
�1 6= �2, the solutionsx(t; �1; x0; u) andx(t; �2; x0; u) exist on[0; �],
0 < � � T , and their corresponding outputs satisfy, ont 2 [0; �],
y(t; �1; x0; u) 6= y(t; �2; x0; u).

This property was termed in [20] as (instantaneously) locally
strongly identifiable. A property of distinguishability as defined by
the inequality in Definition 1 is the kernel for observability and identi-
fiability. Refer also to [20] for connections and comparisons between
identifiability and observability of an extended system in which the
constant parameters are considered as states with zero derivatives.

We are more interested in a generic property of identifiability. This
property was studied in [4] for polynomial systems.

To introduce such a concept, we need a topology for the input func-
tion space. For anyT > 0 and a positive integerN , the spaceCN [0; T ]
is the space of all functions on[0; T ] which have continuous deriva-
tives up to the orderN . A topology of the spaceCN [0; T ] is the one
associated with following well-defined norm: forr(t) 2 CN [0; T ],
kr(t)k = N

i=0 maxt2[0;T ] jr
(i)(t)j.

For anyT > 0 and positive integerN , denoteCN
U [0; T ] the set of

all admissible inputs (on[0; T ]) that have continuous derivatives up to
the orderN . The topology ofCN

U [0; T ] is defined to be them-fold
product topology ofCN [0; T ]. The topology ofCN

U [0; T ]�CN
U [0; T ]

is defined to be the product topology ofCN
U [0; T ]. TheM -fold product

of CN
U [0; T ] is denoted as(CN

U [0; T ])M .
Definition 2: The system�� is said to be structurally identifiable

if there exist aT > 0, and a positive integerN , and open and dense
subsetsM0 � M, P0 � P , U0 � CN

U [0; T ] such that the system
�� is x0-identifiable at� throughu, for everyx0 2 M0, � 2 P0 and
u 2 U0.

The structural identifiability is also interchangeably called geometric
identifiability in this note, because Definition 2 is the generic version
of the definition of [20] (Definition 1). The structural identifiability is
used to characterize the one-to-one property of the map from the pa-
rameter to the system output. The algebraic identifiability is about con-
struction of parameters from algebraic equations of the system input
and output. This concept was first employed in [7] and [14], and later
formally defined in [5] in the differential algebraic framework. We
adapt the definition into the following one.

Definition 3: The system�� is said to be algebraically identifiable
if there exist aT > 0, a positive integerk, and a meromorphic function
� : Rq � R(k+1)m � R(k+1)p ! Rq such that

det
@�

@�
6= 0 (3)

and

� �; u; _u; . . . ; u(k); y; _y; . . . ; y(k) = 0 (4)

hold, on [0; T ], for all �; u; _u; . . . ; u(k); y; _y; . . . ; y(k) where

(�; x0; u) belong to an open and dense subset ofP �M� Ck
U [0; T ],

and _u; . . . ; u(k) are the corresponding derivatives ofu, and
y; _y; . . . ; y(k) are the derivatives of the corresponding output
y(t; �; x0; u).

Algebraic identifiability enables one to construct the parameters
from solving algebraic equations depending only on the information
of the input and output. As a matter of fact, under (3), one can locally
solve (4) with respect to the parameter� invoking the implicit function
theorem.

Sometimes, an initial condition is known for a system. The infor-
mation of the known initial state may provide additional help in deter-
mining the parameters. This phenomenon was recognized in [7], [20],
[14]. The following definition formalizes this.
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Definition 4: The system�� is said to be identifiable with known
initial conditions if there exist a positive integerk and a meromor-
phic function� : Rq � Rn � R(k+1)m � R(k+1)p ! Rq such that
det(@�=@�) 6= 0, and

� �; x0; u 0+ ; _u 0+ ; . . . ; u(k) 0+ ;

y 0+ ; _y 0+ ; . . . ; y(k) 0+ = 0 (5)

hold for all �; x0; u(0
+); _u(0+); . . . ; u(k)(0+); y(0+ ; _y(0+);

. . . ; y(k)(0+)), where (�; x0; u(0+); _u(0+); . . . ; u(k)(0+) belong
to an open and dense subset ofP � M � U(k+1)m, and y(0+);
_y(0+); . . . ; y(k)(0+)) are the derivatives of the corresponding output
y(t; �; x0; u) evaluated att = 0+.

III. CHARACTERIZATIONS

We will give characterizations of the algebraic identifiability and
structural identifiability in the linear algebraic framework of nonlinear
systems [2]. The characterizations also lend themselves to isolate the
initial conditions and inputs that are not persistently exciting, i.e.,
where the system parameters can not be determined.

A. Algebraic Framework

To recall the linear algebraic framework, letK be the field consisting
of meromorphic functions ofx, �, u and finite derivatives ofu, and de-
fineE = span

K
fdKg, that is, a vector inE is a linear combination of

a finite number of one-forms fromdx; d�; du; d _u; . . . ; du(k); . . ., with
coefficients inK. The vectors inE are called one-forms. The differen-
tiation of a function� x; �; u; . . . ; u(k) along the dynamics of (1) is
defined as

_� =
@�

@x
f(x; �; u) +

k

i=0

@�

@u(i)
u(i+1)

and this operation can be extended to differential one-forms
! = �xdx + ��d� + �idu

(i) 2 E as the following:

_! = _�xdx+ _��d� + _�idu
(i) + �xdf(x; �; u) + �idu

(i+1)

where _�x and _�� are the derivatives of�x and�� , respectively, along
the dynamics of (1). Note that_! 2 E.

B. Algebraic Identifiability

DenoteY = 1

k=0 span dy; d _y; . . . ; dy(k) , X = spanfdxg,

U = 1

k=0 span du; d _u; . . . ; du(k) , � = spanfd�g, then one has
immediately the following result on algebraic identifiability.

Theorem 1: The system is algebraically identifiable if and only if
� � (Y + U).

Proof: (necessity) When (4) holds for some�, thend� 2 Y+U ,
or � � Y + U .

(sufficiency) If d� = N

i=0 �idy
(i) + �idu

(i) , denoting! =

d� � N

i=0 �idy
(i) + �idu

(i) , then!(= 0) is exact. Hence there

exists a function� �; u; . . . ; u(N); y; . . . ; y(N) such that! = d�.
Since! = 0, one can choose, without loss of generality, that

� �; u; . . . ; u(N); y; . . . ; y(N) = 0 (6)

and� satisfying (3). By the Brown Theorem [15], there is aT > 0
such that the previous equation and (3) hold on an open and dense
subset, denoted asS, of P � (CU [0; T ])

N+1 � (Cy[0; T ])
N+1, in

which CU [0; T ] = C1
U [0; T ], andCy[0; T ] = C1

y [0; T ] is the space
of all functions from[0; T ] toRp with continuous differentiations.

Denote as	 the map fromP � M � CN
U [0; T ] to P �

(CU [0; T ])
N+1 � (Cy[0; T ])

N+1, defined by

(�; x0; u)! �; u; . . . ; u(N); y; . . . ; y(N)

then it can be easily verified that the map	 is continuous with respect
to the previously defined topology, therefore	�1(S) is an open and
dense subset ofP �M � CN

U [0; T ] [3]. This shows that (6) and (3)

hold for all �; u; _u; . . . ; u(N); y; _y; . . . ; y(N) where(�; x0; u) be-

long to the open and dense subset	�1(S) ofP�M�CN
U [0; T ], and

_u; . . . ; u(N) are the corresponding derivatives ofu, andy; _y; . . . ; y(N)

are the derivatives of the corresponding outputy(t; �; x0; u).
That is, the system is algebraically identifiable.

C. Structural Identifiability and Identifiability With Known Initial
Conditions

In the following theorem, we give characterizations for the structural
identifiability and the identifiability with known initial conditions.
We also prove that the structural identifiability is equivalent to
the identifiability with known initial conditions. DenoteYk =

span dy; d _y; . . . ; dy(k) andUk = span du; d _u; . . . ; du(k) .
Theorem 2: The following statements are equivalent:

i) the system�� is structurally identifiable;
ii) � � X + Y + U ;
iii) dim(Yk + X + Uk)=(X + Uk) = q, for some integerk; the

left-hand side of the equation denotes the quotient space;
iv) the system�� is identifiable with known initial conditions.

Proof: i)) ii): If the system isx0-identifiable at� through the
inputu, then the mapping

�0
�1
...

�k+1

=

y(x(0+; �; u(0+)); �; u(0+))

_y(x(0+; �; u(0+)); �; u(0+); _u(0+))
...

y(k) x(0+; �; u(0+)); �; u(0+); _u(0+); . . . ; u(k)(0+)

is one-to-one, for somek, from � to y; _y; . . . ; y(k) . One has that

rank (@�=@�) = q, where� = (�0; �1; . . . ; �k+1)
T .

Now that dy; d _y; . . . ; dy(k) � span dx; d�; du; . . . ; du(k) ,

there is a matrix� = 
T0 ; 

T
1 ; . . . ; 


T
k

T
2 Kk�q such that

dy � 
0d�; d _y � 
1d�; . . . ; dy
(k) � 
kd�

� span dx; du; . . . ; du(k) : (7)

By the definition of derivatives along the dynamics of the system
(1), one knows immediately that�0 = @�=@�, where�0 is the
evaluation of� at x0; �; u(0+); . . . ; u(k)(0+); . . .. So,rank�0 = q.
This implies, by the Brown Theorem [15], that� has the maximal rank
q for an open and dense subset ofx; � andu; . . . ; u(k); . . .. Thus, one
has

rankK� = q: (8)

From (7) and (8), one solves ford� and� � X + Y + U .
ii), iii): To prove the equivalence of ii) and iii), note that, for all

k � 0

Yk � X +�+ Uk (9)
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and when ii) holds, it holds for some finite integerk (abusing the nota-
tion). So, ii) is equivalent toX + Yk + Uk = X +�+ Uk, for some
k, and the result follows.

ii) ) iv): If � � X + Y + U , then d� = �dx +
k

i=0 �idy
i) + �idu

(i) , for suitable matrices�, �1, �i, whose com-

ponents belong toK. Define! = d���dx� k

i=0(�idy
(i)+�idu

i)),
then similar to the proof of sufficiency of Theorem 1, there exists
a function�(�; x; y; . . . ; y(k); u; . . . ; u(k)) such that� = 0 and
det (@�=@�) = 1 hold on an open and dense subset. Therefore,
they must also hold for all values ofx0, y(0+); . . . ; y(k)(0+),
u(0+); . . . ; u(k)(0+) in an open and dense subset.

That is, the system�� is identifiable with known initial conditions.
iv) ) i): If the system is identifiable with known initial condition,

then for every�, there is an open setP containing �, such that
det(@�=@�) 6= 0, and

� �; x0; u(0
+); _u(0+); . . . ; u(k)(0+);

y(0+); _y(0+); . . . ; y(k)(0+) = 0:

Thus, on an open subset ofP , by solving the previous equation for�,
one has

� = � x0; u(0
+); _u(0+); . . . ; u(k)(0+);

y(0+); _y(0+); . . . ; y(k)(0+) :

From here, one can see that the map from the parameter� to the
outputy must be one-to-one.

D. Relationship Between Algebraic and Structural Identifiability

First of all, algebraic identifiability implies structural identifiability.
Corollary 1: If a system is algebraically identifiable, then it is struc-

turally identifiable.
Proof: The proof follows from Theorem 1, Theorem 2, andY +

U � X + Y + U .
A complete characterization of the relationship between algebraic

identifiability and structural identifiability is described by the following
theorem.

Theorem 3:

1) If

X \ (Y +�+ U) = X \ (Y + U) (10)

then the system is algebraically identifiable if and only if it is
structurally identifiable.

2) If the system is algebraically identifiable, then (10) holds.

Proof:

1) We only need to show that if (10) holds and� � X + Y + U ,
then� � Y + U .

To see this, for any! 2 �, there is an!x 2 X , an!y 2 Y
and an!u 2 U , such that! = !x + !y + !u, so!x =
! � !y � !u 2 X \ (Y + � + U). Hence, by (10), there is
an!1

y 2 Y and an!1
u 2 U such that!x = !1

y + !1
u. Therefore,

one has,! = !y + !1
y + !u + !1

u 2 Y + U , proving that
� � Y + U .

2) The proof is straightforward, thus omitted.

TABLE I
IDENTIFIABILITY CHARACTERIZATIONS

E. Identifiability With Partially Known Initial Condition

Assume that initial conditions are partially known forxi(0), i =

i1; . . . ; is, is 2 f1; . . . ; ng, and the identifiability problem in this case
is to find whether the parameter� can be expressed as a meromorphic
function ofxi(0), i = i1; . . . ; is, andu, y and their derivatives.

Definition 5: The system�� is said to be identifiable with partially
known initial conditionsxi(0), i = i1; . . . ; is, is 2 f1; . . . ; ng if there
exist a positive integerk and a meromorphic function� : Rq �Rs �

R(k+1)m � R(k+1)p ! Rq such thatdet @�=@� 6= 0, and

� �; xi (0); . . . ; xi (0); u(0+); _u(0+); . . . ; u(k)(0+);

y(0+); _y(0+); . . . ; y(k)(0+) = 0 (11)

hold for all (�; xi (0); . . . ; xi (0); u(0+); _u(0+); . . . ; u(k)(0+);

y(0+); _y(0+); . . . ; y(k)(0+)) belonging to an open and dense subset
of Rq � Rs � R(k+1)m � R(k+1)p.

DefineXp = spanfdxi; i = 1; . . . ; isg. Then quite analogous to the
aforementioned development, one has the following characterization.

Theorem 4: The system is identifiable with knownxi(0),
i = i1; . . . ; is if and only if � � Y + U + Xp, or equivalently
� \ (Y + U + Xp) = �.

A proof of the result is left for the interested readers.
If we have two sets of known initial conditionsX 1

p andX 2
p , and

one is larger than the otherX 1
p � X 2

p , then the following corollary is
implied by Theorem 4.

Corollary 2: If the system is identifiable withX 2
p , then it is identi-

fiable withX 1
p .

The characterizations of the different notions of identifiability are
summarized in Table I.

IV. CALCULATION

Section III was devoted to the characterization of various notions
of identifiability and their relationships. Let us now investigate the
computational issues for the determination of the parameter identifi-
ability.

Note thatX \ (Y + U) is the observation cospace of the system (1)
[2], whileX \(Y+�+U) can be regarded as the observation cospace
with parameter. One checks the identifiability through calculating the
input-output relations of the system. One way of doing this is first to
eliminatex through observability properties of the system.

Define for (1) the so-called observability indexes. Let

Fk := X \ span dy; d _y; . . . ; dy(k�1) + U +�

for k = 1; . . . ; n. Consider the filtrationF1 � F2 � � � � � Fn. Then,
as done in [13] for nonlinear systems without parameters and which
are linearizable by output injections, defined1 := dimF1 anddk :=

rank
@ y; _y; . . . ; y(n�1)

@x
=rank

@ y1; _y1; . . . ; y
(k �1)
1 ; y2; . . . ; y

(k �1)
2 ; . . . ; yp; _yp; . . . ; y

(k �1)
p

@x
=k1 + k2 + � � �+ kp: (12)
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dimFk � dimFk�1, for k = 2; . . . ; n. Let ki := maxfk j dk � ig:

Then the listfk1; k2; . . . ; kpg is the list of observability indices anddk
represents the number of observability indices which are greater than
or equal tok, for k = 1; . . . ; n.

Reorder, if necessary, the output components such that (12), as
shown at the bottom of the page, holds. Thanks to (2), thep observ-
ability indices are well defined. Compute

dy1 =�11dx+ 
11d�(modU)

...

dyp =�p1dx+ 
p1d�(mod U):

By assumption,rank �T11; . . . ; �
T
p1

T
= q. More generally, compute

dy
(j�1)
i = �ijdx+ 
ijd�(mod U)

for i = 1; . . . ; p andj = 1; . . . ; ki. From (12), any�ij can be written
as linear combination off�11; . . . ; �1;k ; . . . ; �p1; . . . ; �p;k g.

Higher order time derivativesdy(j)i can be computed and, from the
implicit function theorem,dx can be substituted to obtain

dy
(j)
i =

p

r=1

k�r

s=1

�rsdy
(s�1)
r + 
i;j+1d�(mod U):

Then, the system is geometrically identifiable if and only if there are
integersk�i , for i = 1; . . . ; p, such thatrank�g = q, where

�g = 

T
11; . . . ; 


T
1k ; 


T
21; . . . ; 


T
pk

T

:

The system is algebraically identifiable if and only if there existp

integersl�i , for i = 1; . . . ; p, such thatrank�a = q, where

�a = 

T
1;k +1; . . . ; 


T
1l ; 


T
2;k +1; . . . ; 


T
pl

T

:

Definition 6: A pair (x0; u(t)) is algebraically (geometrically) per-
sistently exciting for�0 if �a (�g), as previously defined, is of rankq
when evaluated atx0, �, andu(t), . . ., u(k)(t).

From the aforementioned development, we see that when(x0; u(t))
is algebraically (geometrically) persistently exciting, the parameters
can be determined at least locally around(x0; u(t)) as expressions of
u, . . ., u(k) andy, . . ., y(k) (andx0).

When(x0; u(t)) is not algebraically (geometrically) persistently ex-
citing for�0, it is referred to as an algebraic (a geometric) singular point
for the identifiability of�0.

We can make use of the previous calculation procedures to check
singularities.

V. IDENTIFIABILITY OF HIV/AIDS M ODELS

A three dimensional model of HIV/AIDS with six parameters was
introduced for the study of virus dynamics in [8], [21], [16]. [22] pre-
sented on-line estimation methods for all these six parameters of the
model which is easily verified to be algebraically identifiable.

A four-dimensional model is more accurate by incorporating both
the actively infectedCD4+ T cells and the latently infectedCD4+
T cells [19]. The four state variables are: the population of sizes of
uninfected cells, or healthy cells,T ; the latently infected cells,T1; the
productively infected cells (also called as actively infected cells),T2;
and the free virus particles,v. T1 is the population of cells which are
infected by the virus, but which do not yet produce new virus particles.
T2 denotes the population of infected cells which do produce virus
particles.

The latently infected cellsT1 are produced at a rateq1�vT , with
q1 � 1. �1 is their death rate constant. They are not producing new
virus particles but they may produce such virus particles when acti-
vated;k1 is the rate that latently infected cells convert to productively
infected cells.

The productively infected cellsT2 are produced at a rateq2�vT ,
with q2 � 1. �2 is their death rate constant.

The free virus particlesv are produced by the actively infectedT2
cells at a constant ratek2 and their death rate constant isc.

This is summarized in the following fourth-order model:

_T =s� dT � �vT (13)
_T1 =q1�vT � �1T1 � k1T1 (14)
_T2 =q2�vT + k1T1 � �2T2 (15)

_v =k2T2 � cv: (16)

We assume that efficient monitoring of the healthyCD4+ T cells
and virus in blood samples is available, which is in accordance with
the current medical practice,

y1 =T

y2 =v:

This four-dimensional HIV model exhibits more interesting identi-
fiability properties.

A. Algebraic Identifiability

Compute_y1 = s� dy1 � �y1y2, thus, the outputy1 has an observ-
ability index equal to 1. Higher order derivatives yield�y1 = �d _y1 �

�(y1y2)
(1), y(3)1 = �d�y1��(y1y2)

(2). Now, we have got three equa-
tions in three unknown parameterss, d and�. For any persistently ex-
citing trajectoryy(t), i.e., such that

rank

1 �y1 �y1y2

0 � _y1 �(y1y2)
(1)

0 ��y1 �(y1y2)
(2)

= 3 (17)

the three equations can be solved to get a unique solution ins, d, � as
functions ofy(t), _y(t), �y(t) andy(3)1 (t). Therefore, these three param-
eters are identifiable. For the estimation of these three parameters, at
least four measurements ofy1 and three measurements ofy2 are nec-
essary.

For the rest of parameters, compute_y2 = k2T2 � cy2,
�y2 = k2q2�y1y2 + k1k2T1 � k2�2T2 � c _y2, and

y
(3)
2 =k2q2�(y1y2)

(1) � (�1 + �2 + c+ k1)�y2

� (�2c+ �1�2 + �1c+ k1c+ k1�2) _y2

+ (k1k2q1� + k2q2�(�1 + k1))y1y2

� c�2(�1 + k1)y2: (18)

Rename the parametric coefficients in (18) asy
(3)
2 = �1(y1y2)

(1) +
�2�y2 + �3 _y2 + �4y1y2 + �5y2, where

�1

�2

�3

�4

�5

=

k2q2�

�(�1 + �2 + c+ k1)

�(�2c+ �1�2 + �1c+ k1c+ k1�2)

(k1k2q1� + k2q2�(�1 + k1))

�c�2(�1 + k1)

(19)

then higher order derivatives ofy2 will just read as

y
(i)
2 = �1(y1y2)

(i�2) + �2y
(i�1)
2 + �3y

(i�2)
2

+�4(y1y2)
(i�3) + �5y

(i�3)
2 :
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TABLE II
ALGEBRAIC INDENTIFIABILITY OF 4-D HIV MODEL

The five “parameters”�1; . . . ; �5 can be computed from any persis-
tently exciting trajectoryy(t) such thatrank @ y

(3)
2 ; . . . ; y

(7)
2 =

@(�1; . . . ; �5) = 5, i.e.,

rank

(y1y2)
(1) �y2 _y2 y1y2 y2

(y1y2)
(2) y

(3)
2 �y2 (y1y2)

(1) _y2
(y1y2)

(3) y
(4)
2 y

(3)
2 (y1y2)

(2) �y2
(y1y2)

(4) y
(5)
2 y

(4)
2 (y1y2)

(3) y
(3)
2

(y1y2)
(5) y

(6)
2 y

(5)
2 (y1y2)

(4) y
(4)
2

= 5: (20)

Anyhow, the system is not algebraically identifiable. Besides the iden-
tification of s; d; �, 5 over 7 remaining parameters can be computed in
terms of the measurements and two remaining parameters, if the map
defined by (19) has rank 5. It is noted that the map defined by (19) is
of rank 5 if

q1q2�k2(�1 + k1 � �2)(�2 � c)(�1 + k1 � c) 6= 0: (21)

It is noted that some of the parameters can be determined by other
methods. For example, through the experiment of [1],q1 is found to
beq1 = 0:01, and [10] found thatq2 = 0:02. It is interesting to see
whether (19) defines a map of rank 5 under the condition that two of
the seven parameters(q1; q2; k1; �1; k2; �2; c) are known (� 6= 0 is
assumed to be known due to (17).) If this is the case, we can still claim
that all the rest of the parameters are algebraically identifiable.

Table II is the exhaustive list of all the cases. These conclusions are
drawn based on the analysis of the rank of the map defined by (19) by
assuming two of the parameters are known.

B. Geometric Identifiability

Let us now inspect the geometric identifiability of the seven re-
maining parametersfq1; q2; �1; �2; k1; k2; cg. Introduce the notation

�1 := k2q2� and�2 := k1k2q1� and consider the new list of
parametersf�1;�2; �1; �2; k1; k2; cg.

Compute�y2, y(3)2 andy(4)2 as

�y2 =�1y1y2 + k1k2T1 � k2�2T2 � c _y2 (22)

y
(3)
2 =�1(y1y2)

(1) +�2y1y2 � (�1 + k1)

� [�y2 ��1y1y2 + �2( _y2 + cy2) + c _y2]

� �2(�y2 + c _y2)� c�y2 (23)

y
(4)
2 =�1(y1y2)

(2) +�2(y1y2)
(1) � (�1 + k1)

� y
(3)
2 ��1(y1y2)

(1) + �2(�y2 + c _y2) + c�y2

� �2 y
(3)
2 + c�y2 � cy

(3)
2 : (24)

Higher order derivatives are easily obtained by differentiating (24).
Introduce the notationA = y1y2,B = (y1y2)

(1)+(�1+k1)(y1y2),
C = �[�y2��1y1y2+�2( _y2+ cy2)+ c _y2],D = �[(�1+k1)( _y2+
cy2)+�y2+c _y2],E = �[(�1+k1)(�2y2+ _y2)+�2 _y2+�y2], compute

@ _y2; �y2; y
(3)
2 ; y

(4)
2 ; y

(5)
2 ; y

(6)
2 ; y

(7)
2 =@(�1;�2; �1; �2; k1; k2; c) as

the equation shown at the bottom of the page.
It is clear that this matrix has full rank ifk2T1T2 6= 0 and

rank

_B _A _C _D _E
�B �A �C �D �E

B(3) A(3) C(3) D(3) E(3)

B(4) A(4) C(4) D(4) E(4)

= 5: (25)

Due to the relationship between(A;B;C;D;E) and

(y1y2)
(1); �y2; _y2; y1y2; y2 , we can verify that (25) holds if

and only if (20) and (21) are satisfied.
The system is, thus, fully geometrically identifiable, or equivalently,

the parameters can be estimated if we know the initial condition and
the plasma viral load and theCD4+ T cell count.

Again this analysis provides guidelines for the clinical measurement.
Note that apart from the higher order input-output equations (23) and
(24), etc., one needs two extra equations (one of_y2 and (22)) which
depend on the availability ofT1 andT2. Most likely that the persistent
excitation condition (20) holds only during the acute infection stage and
after sufficient disturbing the “set-point” with antiretroviral chemother-
apies. Hence, for most HIV patents who are already in the asymp-
tomatic stage, to determine all ten parameters, it is suggested to do at
least one “comprehensive” test before the initiation of chemotherapy
which includes the viral load,CD4+ T cells, latently infectedCD4+
T cells and actively infectedCD4+ T cells. After the initiation of treat-
ment, it is suggested to do at least seven measurement for the viral load
and five measurements for theCD4+ T cells. And for more accurate
estimation of the parameters, one can repeat the above cycle of mea-
surements. As an example, one cycle of one measurement daily will be
accomplished in a week. With the advance of faster measuring device
[17], it is envisaged that these measurements will be available cost ef-
fectively in a near future.

The actual estimation procedures of these ten parameters will be pre-
sented elsewhere.

0 0 0 0 0 T2 �y2
A 0 0 �k2T2 k2T1 [k1T1 � �2T2] � _y2
B A C D C 0 E
_B _A _C _D _C 0 _E
�B �A �C �D �C 0 �E

B(3) A(3) C(3) D(3) C(3) 0 E(3)

B(4) A(4) C(4) D(4) C(4) 0 E(4)

:
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VI. CONCLUSION

In this note, we have studied different concepts of nonlinear iden-
tifiability in the linear algebraic framework. Constructive procedures
have been worked out for both geometric and algebraic identifiability
of nonlinear systems. Relationships between different concepts have
been completely characterized. As an application of the theory devel-
oped, we investigated the identifiability properties of a four dimen-
sional model of HIV/AIDS. The questions answered in this study in-
clude the minimal number of measurement of the variables for a com-
plete determination of all parameters and the best period of time to
make such measurements. This information will be useful in formu-
lating guidelines for the clinical practice.
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Robust Control of Nonlinear Systems in the Presence of
Unknown Exogenous Dynamics

Zhihua Qu and Yufang Jin

Abstract—A robust control is designed for a class of uncertain systems,
and it is distinct and novel that the proposed control does not require any in-
formation of a bounding function on nonlinear uncertainties in the system.
Instead, the uncertainties to be compensated for are generated by an exoge-
nous system whose dynamics are either completely unknown or partially
unknown. The only requirements on the exogenous system are that its un-
known dynamics are bounded by a known function and that its output is
bounded. The proposed robust control is based on a nonlinear observer that
estimates the uncertainties. It is shown that, under different sets of condi-
tions, local, semiglobal, or global stability of uniform ultimate boundedness
or asymptotic stability can be achieved.

Index Terms—Bounding function, estimation, Lyapunov direct method,
nonlinear uncertainty, observer, robust control.

I. INTRODUCTION

Robustness is one of the essential concepts in control theory.
Roughly speaking, a control system is robust if stability and per-
formance can be maintained under a specific class of uncertainties
which could be unknown functionals, parameter variations, unmod-
eled dynamics, disturbances, etc. Robust control of nonlinear uncer-
tain systems has attracted a lot of attention. Classes of stabilizable
uncertain systems have been found, and several robust control de-
sign procedures have been proposed [4]–[7], [9], [10], [12], [15],
[19]–[21], [24], [26].

In most of the existing results, robust controls are designed to
deal with significant but bounded uncertainties by assuming a known
bounding function on the size of uncertainties. While uncertainties
being bounded ensures that a stabilizing control (if found) will be of
finite magnitude, determining a known bounding function of uncer-
tainties is a nontrivial issue in many applications. Without knowledge
of the bounding function, robust control must be designed to learn
the size of uncertainties while compensating for them. To this end,
progress has been made by combining robust and adaptive control
designs. In [6], the robust control design problem is investigated
under the assumption that the bounding function has a known func-
tional expression and it is parameterized in terms of finite unknown
constants. In this case, an adaptive robust control was proposed to
adaptively estimate the unknown parameters in the bounding func-
tion. In [22], an extension is made so that the bounding function can
be parameterized in terms of time varying parameters. Specifically,
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