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Simulations results show that the proposed scheme can be effecidentifiability of Nonlinear Systems With Application

tively used in closed loop, and that the combined effect of discretization to HIV/AIDS Models

and measurement noise preserve the convergence properties which are

demonstrated in the continuous time domain. X. Xia and C. H. Moog
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A recent effort to include the effect of known initial conditions intoset ?° C P containingé such that for any twd,, . € P°,
identifiability is [4] where a slightly different differential algebraic al-6, # 62, the solutions:(¢, 81, zo, u) andz (¢, 62, xq, u) exist on[0, €],
gorithm was suggested to present a characterization of polynomial sys< ¢ < T, and their corresponding outputs satisfy, fo [0, €],
tems without input. Little systematic study exists, however. The relatt, 61, xo, u) # y(¢, 82, xo, u).
tionship with the algebraic and the geometric ones has not been clearThis property was termed in [20] as (instantaneously) locally

In this note, we will show the following. 1) In a generic sense, thstrongly identifiable. A property of distinguishability as defined by
structural identifiability is equivalent to identifiability with known ini- the inequality in Definition 1 is the kernel for observability and identi-
tial conditions, i.e., the parameters can be determined by the knofiability. Refer also to [20] for connections and comparisons between
initial conditions, the available input and output, if and only if, the maflentifiability and observability of an extended system in which the
between the parameter and the output is one-to-one. We also obtain meastant parameters are considered as states with zero derivatives.
essary and sufficient conditions for all three kinds of identifiability of We are more interested in a generic property of identifiability. This
nonlinear systems. 2) The relationship between the structural conceqiperty was studied in [4] for polynomial systems.
and the algebraic concept is completely characterized. 3) IdentifiabilityTo introduce such a concept, we need a topology for the input func-
with partially known initial conditions is also easily characterized. tion space. Foran¥ > 0 and a positive intege¥ , the spac€™ [0, T

Another distinct feature of the note is that both the structural cois the space of all functions df, 7] which have continuous deriva-
cept and the algebraic one are dealt with in a single framework: ttiees up to the ordeiV. A topology of the spac€'[0, 7] is the one
linear algebraic framework [2]. Constructive procedures are workedsociated with following well-defined norm: feft) € C™[0,T],
out for both geometric and algebraic identifiability of nonlinear systr(¢)|| = Y°*, max;eqo 71 | ().
tems. Though we present generic results, the results can also be us&wr anyZ” > 0 and positive integelV, denoteC [0, 7] the set of
to check the singularities of the system for parameter identification.all admissible inputs (of0, T']) that have continuous derivatives up to

As an application, we study the identifiability properties of thé¢he orderN. The topology ofC%'[0, T] is defined to be then-fold
HIV/AIDS models. We will show in this note that the theoremsproduct topology of? [0, 7). The topology olC[0, T] x C3¥ [0, T
developed in this note lend themselves to characterizations of whetlsatefined to be the product topology@f] [0, T]. The M -fold product
all the parameters in the 4 D HIV/AIDS model are determinable fromf C [0, T is denoted asC#' [0, T])™.
the measurement dfD4+ T cells and virus load, and if not, what Definition 2. The systen®y is said to be structurally identifiable
else one has to measure. Another question answered by this stifidigere exist &I’ > 0, and a positive intege¥, and open and dense
is the minimal number of measurement of the variables that a fistbsetsM® C M, P® C P, U4° C Cf[0,T] such that the system
estimation of all ten parameters is possible. This gives guidelines 95 is xo-identifiable aty throughu, for everyzq € M°, 8 € P° and
the clinical practice. u e U,

The organization of the note is as follows. In Section Il, we review The structural identifiability is also interchangeably called geometric
different concepts of nonlinear identifiability. Algebraic characterizadentifiability in this note, because Definition 2 is the generic version
tions are given in Section lll. Section IV is devoted to the calculatioof the definition of [20] (Definition 1). The structural identifiability is
procedures. Section V contains our study of the identifiability propeused to characterize the one-to-one property of the map from the pa-
ties of the HIV/AIDS model. Some concluding remarks are given irameter to the system output. The algebraic identifiability is about con-
Section VI. struction of parameters from algebraic equations of the system input
and output. This concept was first employed in [7] and [14], and later
formally defined in [5] in the differential algebraic framework. We

Il. CONCEPTS e -
_ _ adapt the definition into the following one.
Consider a nonlinear system Definition 3: The systeni, is said to be algebraically identifiable
. ; if there existal’ > 0, a positive integek, and a meromorphic function
o JE=flabu), 2(0.6) = o, (1) @ :R?x RUFU™ ¢ RFDP . RY such that
=y = hla.8,0)
det 92 3
wherer € R",u € R” andy € R? are the state, input, and output ot 00 #0 ©)
variables of the system. Assume that
and
o Oh(x,0,u) )
rank al’ = (2) @ (Buﬂu**u(k)*yyv*u(k)) = 0 (4)
6 is the parameter to be identifielis assumed to belong #® which ] ® . )
is a simply connected open subset®f. The functionsf(x,¢,«) hold, on [0,T], for all (9»"71“--”” Y YseY ) where
andh(x, 6, ) are meromorphic functions on a simply connected opei, =, u) belong to an open and dense subsePof M x Cglo, 1],
subsetM x P x If of R™ x R x R™. Moreover, without loss of gen- and «,...,u*) are the corresponding derivatives af, and
erality, 2o is assumed to be independentfoénd not an equilibrium ¢, 4,...,y*> are the derivatives of the corresponding output

point of the system. We do not assume there are model uncertaintigg#, 9, zo, u).

Aninput functionu(t) : [0,T] — U, wherel{ is asimply connected  Algebraic identifiability enables one to construct the parameters
open subset aR™, is called an admissible input (¢6, 7) if the dif-  from solving algebraic equations depending only on the information
ferential equation in (1) admits a unique (local) solution. For any initiaf the input and output. As a matter of fact, under (3), one can locally
conditionzo and an admissible input(¢) on [0, T, there exists, on a solve (4) with respect to the paramefanvoking the implicit function
possibly smaller time interval), 7], T < T, a parameterized solution theorem.
x(t,0,x0,u). The corresponding output is denoteddty, 4, xo, u). Sometimes, an initial condition is known for a system. The infor-

A classical definition of identifiability can be found in [20]. mation of the known initial state may provide additional help in deter-

Definition 1: The systemX, is said to bewx, identifiable at¢ mining the parameters. This phenomenon was recognized in [7], [20],
through an admissible input (on [0,77]) if there exists an open [14]. The following definition formalizes this.
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Definition 4: The systent, is said to be identifiable with known  Denote as¥ the map fromP x M x Ci[0,T] to P x
initial conditions if there exist a positive integérand a meromor- (Cy[0,T])V*' x (C,[0. 7)™+, defined by
phic function® : R? x R" x R*+1m « RE+Dr _, R sych that

det(9%/08) # 0, and (6,00, u) = (e u™ gy ™)
& ((7’, wo,u (07) i (0%) ... P (0%, then it can be easily verified that the méipis continuous with respect
’ ’ ’ to the previously defined topology, therefobe ! (S) is an open and
g (07), 5 (0%), ..., y™ (()*)) =0 (5) dense subsetd x M x C§[0,T] [3]. This shows that (6) and (3)

hold for all (e, Wity ™)

ey JYs Yoo e s y(‘w)) where (6, zo,u) be-
hold for all (9-/ w0, u(0%),a(0%),...,u!M(0F), y(0+) 9(0%), long to the open and dense subet' (S) of P x M x C[0, T], and
..y®(0%)), where ¢, 0, u(07),a(07)....,u¥(0F) belong ,...,u") are the corresponding derivativesigfandy, g, . . . , y ¥
to an open and dense subset®fx M x U**Y™ and y(07),  are the derivatives of the corresponding outpt 6, o, u).
§(07),...,y*(0™)) are the derivatives of the corresponding output That is, the system is algebraically identifiable.
y(t, 8, z0,u) evaluated at = 0.
C. Structural Identifiability and Identifiability With Known Initial

IIl. CHARACTERIZATIONS Conditions

We will give characterizations of the algebraic identifiability and N the following theorem, we give characterizations for the structural
structural identifiability in the linear algebraic framework of nonlineajdentifiability and the identifiability with known initial conditions.
systems [2]. The characterizations also lend themselves to isolate f#fe @/s0 prove that the structural identifiability is equivalent to
initial conditions and inputs that are not persistently exciting, i.h® identifiability with known initial conditions. Denot}. =

where the system parameters can not be determined. span {dy, g, ..., dy“’)} andif. = span {du, di,. .. dut® }
Theorem 2: The following statements are equivalent:
A. Algebraic Framework i) the systeniy is structurally identifiable;
To recall the linear algebraic framework, létbe the field consisting 1) © C XY +Y +U;
of meromorphic functions of, 8, « and finite derivatives of,, and de- i) dim(Ye + X +U) /(X +Ur) = ¢, for some integek; the
fine F = span, {dK}, that is, a vector i is a linear combination of left-hand side of the equation denotes the quotient space;
a finite number of one-forms frome, df, du, di, . . ., du‘® . . .., with iv) the systent, is identifiable with known initial conditions.
coefficients inkC. The vectors inE are called one-forms. The differen- Proof: i)= ii): If the system iszq-identifiable atd through the
tiation of a functions (l b,u,..., u(“)) along the dynamics of (1) is input«, then the mapping
defined as o
: ‘ k o o1
o= %f(;v, f,u) + ; %u(lﬂ) .
Ok+t1

and this operation can be extended to differential one-forms

v o0t 4
w = Kodr + redf + Y n:du' € E as the following: y((07, 6. u(07)), 0, u(07))

v ‘ §(2(0F, 60,4 (07)),8,u(0F),4(07))
W = kpdx + kodf + Z 'r}idu(‘) + kodf (z,0,u) + Z 7)L'du(z+l) = .

wheres:, andrg are the derivatives of, andr,, respectively, along g (:c(O+, 6, u(0%)), 8, u(07),a(0h),..., u("’:’(0+)>
the dynamics of (1). Note that € F. )
is one-to-one, for someg, from ¢ to (y, Uyoo .,y“”). One has that
B. Algebraic Identifiability rank (98/96) = ¢, where® = (¢0, é1.. ... bre1)" .
Denote)y = ;- span {dy, dy, ..., dy™" }, X = span{dx}, Now that{dy, dy, ..., dy(k)} C span {dw, de,du,...,du™ },
U =2, span iclu, dt,...,du® }, © = span{df}, then one has there is a matriX’ = (%Tv ~EL '}”{)T € K**1 such that

immediately the following result on algebraic identifiability. . *)
Theorem 1: The system is algebraically identifiable if and only if{dy = 70db. dy —ndd,....dy"" — 7"k=d(’)}

©C (Y+uU). (k)
. C spz dwz,du, ..., du . (7
Proof: (necessity) When (4) holds for sorbethendd € )+, sban { e 0 } %
or® C y +U. v _ , . By the definition of derivatives along the dynamics of the system

(sufficiency) Ifd6 = > .2, (Eifly(') “F'Wvldu(l)): denotingw = (1), one knows immediately thdt,. = 9®/96, whereT,+ is the

. . H p , -+ k -+ - . —
a6 — YN, (Eidy(” + r;idu(”>, thenw(= 0) is exact. Hence there evaluation ofl" atuo, , u(0 ).- - ut®(07), .. .. So,rank To =gq.

) Y ) ™) This implies, by the Brown Theorem [15], thdthas the maximal rank
exists a functionp (9- Uy ut oy, Yt ) such thaty = d®.  ; for an open and dense subset:of andw, ..., u*),. ... Thus, one
Sincew = 0, one can choose, without loss of generality, that has

® (91”'7---7“'(]\7)79115"",,7/(N)) =0 (6) 1'&111(1CF: q- (8)

and® satisfying (3). By the Brown Theorem [15], there iga> 0 From (7) and (8), one solves fd and® C X + ) + U.

such that the previous equation and (3) hold on an open and densg) « ii): To prove the equivalence of ii) and iii), note that, for all
subset, denoted &, of P x (Cyu[0, T x (C,[0, 7D, in 1 > o

which Cy[0,T] = C4[0,T], andCy[0,T] = C4[0,T] is the space

of all functions from[0, T'] to R” with continuous differentiations. Vi CX+0O 4+ U 9)
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and when ii) holds, it holds for some finite intege(abusing the nota- TABLE |
tion). So, ii) is equivalent tot’ + Vi, + Uy = X 4+ © + U, for some IDENTIFIABILITY CHARACTERIZATIONS
k, and the result follows. Definition of identifiability | Characterization
i) = ive:If ® C X+ Y + U, thendfd = krde + Algebraic identifiability | © C Y + U
k Cg..0) C7..(1) ; ; ) _ Identifiability with partially known initial conditions | @ C X, + Y +U
2izo (E,dy +midu ) , for suitable matrices, &1, 7, yvhose cpm Identifiability with known initial conditions | © C Xp+y+u
ponents belong t&. Definew = df — rdae— % (€idy' +nidu?), Geometric identifiability | © C X +V + U
then similar to the proof of sufficiency of Theorem 1, there exists
a function®(8, z. y,....y" u,...,u®) such thatd = 0 and e . . .
det (99/96) = 1 hold on an open and dense subset. Therefor%,' Identifiability With Partially Known Initial Condition
they must also hold for all values ofq, y(07),...,y"(0%), Assume that initial conditions are partially known fer(0), i =
w(07),..., u(k’:’(0+) in an open and dense subset. i1,...,1s,15 € {1,...,n}, and the identifiability problem in this case
That is, the syster, is identifiable with known initial conditions. is to find whether the parametércan be expressed as a meromorphic
iv) = i): If the system is identifiable with known initial condition, function ofz;(0),¢ = ¢1,..., s, andu, y and their derivatives.
then for everyf, there is an open se®P containingd, such that Definition 5: The systent, is said to be identifiable with partially
det(9®/06) # 0, and known initial conditions:; (0),i = iy, ...,is,is € {1,...,n}ifthere
I k) rot exist a positive integet and a meromorphic functiod : R? x R* x
M (9,$0,u(0 ),a(07), ..., w07, RU+D™ o RUHDP _, R1 such thatlet 9% /968 # 0, and
. k .
y(01),5(01),..., g )(()ﬂ) =0 3 (97:&1(0),...,wis(O),u,(0+),ll(O+),...7'u(k)(0+)7
Thus, on an open subsetBf by solving the previous equation fér y(07),5(0%).. .., y(k)(OJr)) =0 (11)
one has
. hold for all (8,2, (0), ..., 2i (0),u(0%), a(0h), ..., u¥(0F)
— + y + y (k) + 1\Y/ ? s 9 kl i 9
b=2¢ (’ro’"(o )»@(07), . w07, y(07),45(07),....y*(0)) belonging to an open and dense subset
. . . s (k+1)m (k+1);
y(07), 507,y M (0%)) . OF ! X B xR x BET .
DefineX,, = span{dx;,i = 1,...,is}. Thenquite analogousto the
From here, one can see that the map from the pararfigtethe aforementioned development, one has the following characterization.
outputy must be one-to-one. Theorem 4:The system is identifiable with knowne;(0),
i = i1,...,is ifandonly if ® C Y 4+ U/ + X}, or equivalently

D. Relationship Between Algebraic and Structural Identifiability © n (Y+U+ X)) =0.

First of all, algebraic identifiability implies structural identifiability. A Proof of the result is left for th.e.ihtereste.d.reacjers. .
Corollary 1: Ifa system is algebraically identifiable, then itis struc- If we have two sets of known initial condition, and,’, and

turally identifiable. one is larger than the othér, O &7, then the following corollary is
Proof: The proof follows from Theorem 1, Theorem 2, a¥id-  implied by Theorem 4.
Ucx+y+Uu. Corollary 2: If the system is identifiable witﬁqf, then it is identi-

A complete characterization of the relationship between algebrdiable with X} .
identifiability and structural identifiability is described by the following The characterizations of the different notions of identifiability are
theorem. summarized in Table I.

Theorem 3:

1) If IV. CALCULATION

Section Ill was devoted to the characterization of various notions
of identifiability and their relationships. Let us now investigate the

then the system is algebraically identifiable if and only if it icomputational issues for the determination of the parameter identifi-
abili

structurally identifiable. lity. o _ _
2) If the system is algebraically identifiable, then (10) holds. Note that¥’ N (Y +{) is the observation cospace of the system (1)
Proof: [2], while X N ()Y 4+ © +{) can be regarded as the observation cospace
’ . . with parameter. One checks the identifiability through calculating the
& :/t:/sno(sl)lcn;ei t; show that if (10) holds aGdC '+ + 1, input-output relations of the system. One way of doing this is first to
To see this fo.r any € O, there is anv, € X, anw, € Y eliminatex through observability properties of the system.
and anw E‘Z/{ such thaty — w N Lf N sol; . Define for (1) the so-called observability indexes. Let
u y — T Yy Wy W —
W= Wy~ wu € 2(10 Y +0O+U). Hen(ie, by1 (10), there is F.= XN (Span {dy,dy, 3 .,dy“‘"l)} U+ (_))
anw, € Y and anw, € i such thatv, = w, + w,. Therefore,
one hasw = wy, + »f, + wa +w. € Y+ U, proving that fork =1,...,n. Consider the filtratiotF, C F> C --- C F.. Then,

XNQY+0+U)=xXnQY+U) (10)

0 Cy+U. as done in [13] for nonlinear systems without parameters and which
2) The proof is straightforward, thus omitted. are linearizable by output injections, defidie := dim Fy anddy :=
: n—1) . — o — . ko, —
a(y:y,----,y( 1)) a(ylayh"':ygkl 1)>y2>""/ygk2 1)'/"-vypayp>"'1y1(3p 1))
rank =rank
O Jdx

=k + ka4 -+ k. (12)
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dim Fy, — dim Fr—y, fork = 2,...,n. Letk; := max{k | dp > i}. The latently infected celld} are produced at a ratg 3v7", with

Thenthe lis{k1, ko, ..., k, } is the list of observability indices anti. ~ ¢1 < 1. u1 is their death rate constant. They are not producing new

represents the number of observability indices which are greater thaus particles but they may produce such virus particles when acti-

or equal tok, for k = 1,...,n. vated;k; is the rate that latently infected cells convert to productively
Reorder, if necessary, the output components such that (12),ifected cells.

shown at the bottom of the page, holds. Thanks to (2)ptbeserv-  The productively infected cell$, are produced at a ratg 3vT,

ability indices are well defined. Compute with ¢ < 1. po is their death rate constant.
The free virus particles are produced by the actively infect&d
dyr =&11dx + v11d8(modlf) cells at a constant rate and their death rate constantis

This is summarized in the following fourth-order model:

dyp =&p1da + vp1df(mod U). T =s —dT = foT (13
e Tl :qlﬁ'vT - ;llTl - ]171T1 (14)
By assumptionyank [¢{;.....&5] = ¢. More generally, compute Ty =go 80T + b Th — p2T (15)

d’yl(jil) = &da + i, dB(mod U) 0 =koTo — cuv. (16)

We assume that efficient monitoring of the healttiip4+ T cells

fori=1,..., pandj =1,.... k. From (12), any;; canbe written .4 iris in blood samples is available, which is in accordance with

as Imear combln.atlon o{f_fu.,_. e (&_{kl, R T SR S the current medical practice,
Higher order time derivativedy;”’ can be computed and, from the
implicit function theoremdx can be substituted to obtain y1 =T
p k—r y2 =v.
() _ o (s—1)
dy;’’ = Nrsdyy + Yi;+1d8(mod U). . . . . . o .
v (; Sz:; Pratd ) phi1d6( ' This four-dimensional HIV model exhibits more interesting identi-

fiability properties.
Then, the system is geometrically identifiable if and only if there are

integersk;, fori = 1,...,p, such thatankI'y = ¢, where A. Algebraic Identifiability
oo 7 7 Computey; = s — dy1 — By1y=, thus, the outpug; has an observ-
9= [’m, ce V1kEs V2L e s )’pk;] ability index equal to 1. Higher order derivatives yigld = —dj, —
Blyrya) ", v = —dijy — B(y192)® . Now, we have got three equa-

. The system is algebraically identifiable if and only if there exist {ions in three unknown parameters? and3. For any persistently ex-
integerd;, fori = 1,...,p, such tharank T, = ¢, where citing trajectoryy(t), i.e., such that

L. = [W"1T,h+1,...,W"1Tz§sz,k2+1,...,va1;] . L=y =y
rank |0 —j1 —(yiy2) | =3 (17)
Definition 6: A pair (x0, u(t)) is algebraically (geometrically) per- 0 —ji —(yiy2)®
sistently exciting fow, if I', (I'y), as previously defined, is of rank . . L
when evaluated ato, ¢, andu(t), - . ., o (F) (). the three equations can be solved to get a unique solutiendin? as

functions ofy(), 5(t), ii(t) andy® (). Therefore, these three param-

. From th? aforementlon_ed development, we se.e_ that wheru(t)) eters are identifiable. For the estimation of these three parameters, at
is algebraically (geometrically) persistently exciting, the parameters

can be determined at least locally aroud, u(£)) as expressions of €ast four measurements gf and three measurementsyefare nec-
u, ..., ul® andy, ..., y(k) (anduyo). es'iary.th t of t - LT .

When(xo, u(t)) is not algebraically (geometrically) persistently ex-.. :ork -eﬁ re§ -:)k ié[ﬁm_e;rsf ;Oinpgjeand— 2he T
citing foréo, itis referred to as an algebraic (a geometric) singular poirqf 2420142 ety T ety

for the identifiability off. _ _ yg“) _ »’chﬂ(myz)(” — (1 + p2 + ¢+ k)i
We can make use of the previous calculation procedures to check , .
singularities. = (pze s + pae + ket kijia )
+ (kikoq1 B+ kaqaB(p1 + k1))y1y2
V. IDENTIFIABILITY OF HIV/AIDS M ODELS = cpa(pn + ki)ye. (18)

A three dimensional model of HIV/AIDS with six parameters Waganame the parametric coefficients in (18)&Y = 61 (y1y2)™" +
introduced for the study of virus dynamics in [8], [21], [16]. [22] Pre+, s, 1 6,40 + 4,142 + 6592, where '
sented on-line estimation methods for all these six parameters of the™ o o

model which is easily verified to be algebraically identifiable. 61 kagqa3
A four-dimensional model is more accurate by incorporating both 65 —(p1 +p2+c+ ki)
the actively infected”D4+ T cells and the latently infecte@D4+ O | = | =(poc+ paps + pic+ kic+ ko) 19)
T cells [19]. The four state variables are: the population of sizes of 0, (krkeq1f + kaqaB(uy + k1))
uninfected cells, or healthy cell, the latently infected cells[; ; the b5 —epz (a4 k)

productively infected cells (also called as actively infected ce€lls),

and the free virus particles, 7; is the population of cells which are then higher order derivatives g¢ will just read as
infected by the virus, but which do not yet produce new virus particles,, (i—2) (-1 (i—2)

T> denotes the population of infected cells which do produce virds = 01(y1y2) + 02y, + 03y,
particles. +94(1/12;2)(i_3) _i_ﬁgyg,:_g)_
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O = koge and @, := kikoq18 and consider the new list of
parameter§©, O, p1, p2, k1, ko, c}.
Computejj,, y$* andy'" as

known | identifiability condition for the rest of the parameters | remark
(g1,92) (21) . .
(q1, 1) (21) Py =01y1y2 + ki1 k2T — kopnTh — cyo (22)
(91, k1) (21) G R SN € ) BT = Y :
(q1, o) not identifiable rank is < 4 Y2 =61 (yl yz) + O2yly2 (’ul + kl)
(q1, k2) (21) X [f2 — O1y1y2 + p2(92 + cy2) + cyo]
(q1,¢) not identifiable rank is < 4 . . .
(g2, 1) @) — p2(fa + cgj2) — cijo (23)
(2, k1) @0 N PN C) BN ¢ S I )
(g2, p2) not identifiable rank is < 4 Y2 =61 (yty)z) +02 (ylyz) (Nl + ]‘1)
(a2, k2) eR) % [ B _ 0 ()Y o (i 4 i }
(g2,¢) not identifiable rank is < 4 92 ! (!]1 !I.)) + e (yz + CyZ) + ey
(1, k1) not identifiable rank is < 3 (3) . (3)
(w1, p2) not identifiable rank is < 4 2 (y2 + Cy2) Yz - (24)
k 21 . L ) . ) L
e - igher order derivatives are easily obtaine ifferentiatin .
Eiﬁ,c)z) not ld(ent)xﬁable rank is < 4 H gh derd _t ly bt d by diff tiat 9 24
(1, 12) 1ot identifiable rank is < 4 Introduce the notatiod = y1y2, B = (y1y2)" + (1 +k1 ) (y1y2),
E:hg) not id(eznlt)iﬁable rank is < 4 ¢= —[ijz B ®1y1y2 the (yz + Cyz) + Cﬂz], D= _[(#1 + kl)@z +
2 P p— —= cya)+ij2 +eya], E = —[(p1 + k1) (p2y2 +92) + p2g2 + ji2], compute
(p2, k2) not identifiable rank is < 4 (3 o (5 6 7
(42, 0) 1ot identifiable rank is < 3 0 (yz, P24 Yy ), yg ), yg"),yg ), yg") JO(O1,02, 1, po, k1, ko, c) @s
the equation shown at the bottom of the page.
. , . ltis clear that this matrix has full rank i,777, # 0 and
The five “parameters?,..., 85 can be computed from any persis- . . . . .
tently exciting trajectoryy(¢) such thatrank (yés),...,y;’))/ g j g g g
9(61,...,05) =5, i.e, rank BB 4 o3 p®  p® = 5. (25)
(miy2) G g Y1y2 Y2 BW  A® o pW p)
o 15)(2) 3) . (1 v
(41 92)(3) 9%4) 3@) (y: yQ)(Z\ Y2 Due to the relationship between(4,B,C,D,F) and
rank | (y192)"") yy ys ) (yiy2)® G | =5 (20) W 5 i i
)@ 1P D () ® P (y192)'™", 42, 92, y192,y2 ), we can verify that (25) holds if
9 o0 Yt Yay U % and only if (20) and (21) are satisfied.
(1y2)™ w7y (y2)™ s

The system is, thus, fully geometrically identifiable, or equivalently,
Anyhow, the system is not algebraically identifiable. Besides the ideffle parameters can be estimated if we know the initial condition and
tification of s, d, 3, 5 over 7 remaining parameters can be computed the plasma viral load and tteD4+ T cell count.

terms of the measurements and two remaining parameters, if the mafgain this analysis provides guidelines for the clinical measurement.
defined by (19) has rank 5. It is noted that the map defined by (19)N¢te that apart from the higher order input-output equations (23) and
of rank 5 if (24), etc., one needs two extra equations (ong-cénd (22)) which
depend on the availability af; andZ>. Most likely that the persistent
excitation condition (20) holds only during the acute infection stage and
. . after sufficient disturbing the “set-point” with antiretroviral chemother-

It is noted that some of the parameters can be dete_rmlned by OtQSfes. Hence, for most HIV patents who are already in the asymp-
methods. For example, through the experiment _Oftﬂ.]lS _fOUﬂd 0 tomatic stage, to determine all ten parameters, it is suggested to do at
beq, = 0.01, and [10] found thay, = 0.02. Itis interesting t0 see g5t one “comprehensive” test before the initiation of chemotherapy
whether (19) defines a map of rank 5 under the condition that.tvvo \%ich includes the viral load;D4+ T cells, latently infected D4+
the seven paramete(8., gz, ki, i1, ka2, iz, c) are known ¢ # 01S 1 cajis and actively infecte@D4-+ T cells. After the initiation of treat-
assumed to be known due to (17).) If this is the case, we can still clajfpny jt is suggested to do at least seven measurement for the viral load
that all the rest of the parameters are algebraically identifiable. and five measurements for t&4+ T cells. And for more accurate

Table Il is the exhaustive list of all the cases. These conclusions A8imation of the parameters, one can repeat the above cycle of mea-
drawn based on the analysis of the rank of the map defined by (19) Qyements. As an example, one cycle of one measurement daily will be
assuming two of the parameters are known. accomplished in a week. With the advance of faster measuring device
[17], it is envisaged that these measurements will be available cost ef-
fectively in a near future.

Let us now inspect the geometric identifiability of the seven re- The actual estimation procedures of these ten parameters will be pre-
maining parameter§qi, gz, ft1, p12, k1, k2, c}. Introduce the notation sented elsewhere.

q1q28k2 (g1 + k1 — p2)(p2 — ) (1 + ki — ¢) # 0. (21)

B. Geometric Identifiability

0 0 0 0 0 'Tg — Yo ]
A 0 0 —koTs ko [lﬁ T — II,Q'TQ] —]}2
B A C D C 0 E
B A C D C 0 E
B A C D ¢ 0 E
B®  A® o®  pB o6 0 E®
BW AW o) p@ o 0 )
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VI. CONCLUSION [21] X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P.
. . . . . Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, M.
In this note, we have studied different concepts of nonlinear iden- g saag, and G. M. Shaw, “Viral dynamics in HIV-1 infectioNature
tifiability in the linear algebraic framework. Constructive procedures vol. 273, pp. 117-112, 1995.
have been worked out for both geometric and algebraic identifiability22] X. Xia, “Estimation of HIV/AIDS parameters,” presented at the 15th
of nonlinear systems. Relationships between different concepts have FAC World Congr., Barcelona, Spain, July 21-26, 2002.
been completely characterized. As an application of the theory devel-
oped, we investigated the identifiability properties of a four dimen-
sional model of HIV/AIDS. The questions answered in this study in-
clude the minimal number of measurement of the variables for a com-

plete determination of all parameters and the best period of time to ) ]
make such measurements. This information will be useful in formu-Robust Control of Nonlinear Systems in the Presence of

lating guidelines for the clinical practice. Unknown Exogenous Dynamics

Zhihua Qu and Yufang Jin
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