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Parameter Identifiability of Nonlinear
Systems With Time-Delay

J. Zhang, X. Xia, and C. H. Moog

Abstract—In this note, various parameter identifiability concepts for
nonlinear systems with time-delay are defined, complete characterizations
of these concepts as well as easily checkable criteria are provided. It
is proved that geometric identifiability is equivalent to identifiability
with known initial conditions, algebraic identifiability implies geometric
identifiability. As for identifiability with partially known initial conditions,
an easy characterization is also provided.

Index Terms—Identifiability, linear algebraic approach, nonlinear sys-
tems, time-delay.

I. INTRODUCTION

In this note, we consider the parameter identifiability problem of a
nonlinear system with time-delay

�� :

_x = f(x(t� i); �; u(t� j) : i; j 2 S
�

)

y = h(x(t� i); �; u(t� j) : i; j 2 S
�

)

x(t) = x0(t) 8t 2 [�s; 0]

(1)

where x 2 n, u 2 m and y 2 p, and � 2 Rq is the parameter. This
problem grows out of the same problem for systems without time-delay
(see [9]–[11] for historical account and some recent results), and it has
major applications for time-delay systems, for example, the identifica-
tion of the death rate in the SIS epidemic model with maturation delay
(see [2]) as displayed in Section IV.

The study of the identifiability of control systems with time-delay
has been scarce, and limited to linear systems with time-delay. In [8],
[7], [1], aspects of identifiability of linear time-delay system such as
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system parameters, transfer function coefficients as well as time-de-
lays are brought forward. Our results in this note are only concerned
about parameter identifiability of nonlinear systems with time-delay.
As discussions in [7] and [1] reveal, the parameter identifiability of
a linear time-delay system is itself an intricate problem. For nonlinear
time-delay systems, the problem remains largely open and difficult. On
the other hand, a generic version of the problem lends itself to complete
characterizations in light of the algebraic framework developed in [12]
and the rigorous approach taken in [11] for nonlinear systems without
time-delay.

In this note, various parameter identifiability concepts for nonlinear
systems with time-delay are defined, complete characterizations
of these concepts and easily checkable criteria for all of them are
obtained.

Specifically, the results of [11] are generalized to nonlinear systems
with time-delay. Similar results as in [11] are established. That is, we
prove that geometric identifiability is equivalent to identifiability with
known initial conditions, algebraic identifiability implies geometric
identifiability, and some easy criteria for the two kinds of identifia-
bility. As for identifiability with partially known conditions, an easy
characterization is also provided.

It is worthy to note that there are fundamental differences between
the systems with and without time-delay. For example, Theorems 2 and
3 are not direct generalizations of the corresponding results in [11],
since extra operations depending the delay operator have to be done.

The note is organized as follows. In Section II, we give some def-
initions. The main results are established in Section III. Section IV is
devoted to examples. The last section offers some concluding remarks.

II. DEFINITIONS

Tomake things more precise, assume that in the system (1), the func-
tions f and h are meromorphic functions which are defined as the quo-
tients of convergent power series with real coefficients. The integer s is
nonnegative, and the set S

�

:= f0; 1; . . . ; sg is a finite set of constant
time delays, and

f(x(t� i); �; u(t� j); i; j 2 S
�

)

:= f(x(t); x(t� 1); . . . ; x(t� s); �; u(t); u(t� 1); . . . ; u(t� s)):

The function x0 denotes a continuous function of initial condition. As-
sume that rank (@h=@x) = p, that is, for any fixed �, and u in some
open sets, the p components of h are independent functions of x and its
shifts. The variable � is the parameter to be identified and it is assumed
to belong to P which is an open subset of q . Moreover, without loss
of generality, x0 is assumed to be independent of � and u. Denote by
M := C[�s; 0] the set of initial functions on [�s; 0].

For any open subset U � m, an admissible input function u(t) :
[�s; T ]! U is defined to be an input on [�s; T ] such that the differ-
ential equation in (1) admits a unique (local) solution. For any initial
function x0 and an admissible input u(t) on [�s; T ], there exists a pa-
rameterized solution x(t; �; x0; u) on some interval [�s; �T ], �T � T .
Denote the corresponding output by y(t; �; x0; u). The following def-
initions are generalizations of the corresponding ones in [11].
Definition 1: The system �� is said to be x0-identifiable at

� through an admissible input u (on [�s; T ]) if there exists an
open set P0 � P containing � such that for any two distinct
�1; �2 2 P0, the solutions x(t; �1; x0; u) and x(t; �2; x0; u) exist
on [�s; �], 0 < � � T , and their corresponding outputs satisfy
y(t; �1; x0; u) 6= y(t; �2; x0; u) on t 2 [�s; �].

Now, consider the generic property of identifiability. The same
topology for the input function spaces as in [11] is used in this note,
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that is, for any T > 0 and an integer N > 0, the function space
CN [�s; T ] and its topology, the set CN

U [�s; T ] of all admissible
inputs on [�s; T ], the topology of CN

U [�s; T ] � CN
U [�s; T ], and the

topology ofM -fold product (CN
U [�s; T ])M , are all defined exactly as

[11]. DefineWk := P �M� Ck
U [�s; T ] and a natural map 	 from

Wk to P � (C[�s; T ])(k+1) p � (C[�s; T ])(k+1) m such that

(�; x0; u) 7! (�; y(i)(t� j); u(i)(t� j); i; j = 0; 1; . . . ; k):

Then 	 is a continuous map under the topology defined previously.
Definition 2: The system�� is said to be geometrically identifiable

if there exist a T > 0, an integer k � 0, an open subset S1 of Wk ,
a function � which is meromorphic in its arguments, such that � =
�(y(i)(t � j); u(i)(t � j); x(t � j) : i; j = 0; 1; . . . ; k) holds for all
(�; x0; u) 2 S1.

The following one is slightly different from that of [11] by removing
the dense condition.

Definition 3: The system �� is said to be algebraically identifiable
if there exist an integer k � 0, a T > 0, an open subset S1 of Wk , a
meromorphic function �, such that

� = �(y(i)(t� j); u(i)(t� j); i; j = 0; 1; . . . ; k) (2)

holds for all (�; x0; u) 2 S1.
An example in Section IVwill show that the geometric identifiability

is a weaker concept than the algebraic identifiability.
Definition 4: The system �� is said to be identifiable with known

initial conditions if there exist a T > 0, an integer k � 0, an open
subset S2 of Wk , and a meromorphic function � such that

� = �(x0(�i
+
1 ); u

(j)(�i+2 ); y
(j)(�i+2 );

i1 2 S�; i2; j = 0; 1; . . . ; k)

holds for all (�; x0; u) 2 S2, where the notation i+1 means the right
limit of i1.

III. MAIN RESULTS

A. Notations

The notations and linear algebraic tools in [12] are used to build up
the main results. LetK be the field of meromorphic functions of a finite
number of variables in the set C = fx(t � i); �; u(j)(t � i) : i; j 2

�0g, where �0 denotes the set of nonnegative integers. For sim-
plicity, u(j)(t� i) is also denoted byDj�iu(t), whereD = d=dt. For
any matrix A = (aij(t)), define �(A) to be the matrix with (i; j)-el-
ement �(aij(t)) = aij(t � 1). Let K(�] be the noncommutative ring
which is defined as the set of polynomials in � with coefficients in K
(see [12]). Define E = spanKfdKg, which is the set of linear combi-
nations of a finite number of one-forms from dx(t�i),d�,du(j)(t�i),
dy(j)(t� i)with row vector coefficients whose elements are inK. The
elements in E are called one-forms.

The differentiation of a function�(x(t�i1); �; u(j)(t�i2) : i1; i2 2
S�; j = 0; 1; . . . ; k) and a one-form ! =

i
�ixdx(t� i) + ��d�+

ij
�idu

(j)(t � i) 2 E along the dynamics of the system (1) are
defined as

_�=

s

i =0

@�

@x(t� i1)
�i f

+

s

i =0

k

j=0

@�

@u(j)(t� i2)
u(j+1)(t�i2)

_! =
i

_�ixdx(t� i) + _��d� +
ij

_�idu
(j)(t� i)

+
i

�ixd�
if +

ij

�idu
(j+1)(t� i)

where

�i f=f(x(t� i3); �; u(t� i2)

: i2; i3 = i1; i1 + 1; . . . ; i1 + s):

It is important to note that �(�) = �, g(�)(�) = g(1)(�) = g(1)�
for any g(�) 2 K(�].

B. Algebraic Identifiability

Denote Y = spanK(�]fdy
(j) : j 2 �0g, X = spanK(�]fdxg,

U = spanK(�]fdu
(j) : j 2 �0g, � = spanK(�]fd�g, where Y , X ,

U and � are the linear combinations of the generators with row vector
coefficients whose elements are in K. The notation X + � means the
span of fdx;d�g with suitable row vector coefficients.
Theorem 1: The system is algebraically identifiable if and only if

d� 2 Y + U holds for all (�; x0; u) 2 S1, where S1 is an open subset
of some Wk and Wk is defined as in Section II.

Proof: One only needs to consider the sufficiency. By d� 2 Y +
U , one has

d� =

k

i;j=0

(aijD
i�jdy + bijD

i�jdu) (3)

where aij , bij are functions in T := fDi�jy;Di�ju : i; j =
0; 1; . . . ; kg. Without loss of generality suppose that the func-
tions in f�;Di�jy; Di�ju : i; j = 0; 1; . . . ; kg are inde-
pendent and the equality (3) holds on a subset of n , where
n1 = (k + 1)2(p + m) + q. Then it must hold on an open subset
U � n by the implicit function theorem, where q < n2 � n1 and
U is holomorphic to n . The set U corresponds to a set of functions
f�;Di �i y;Di �i u : ij 2 Ij ; j = 1; 2; 3; 4g where Ij is an index
set with cardinality jIj j and jI1j + jI2j + jI3j + jI4j = n2 � q. Now
define a similar map 	0 as in Section II

	0 : (�; x0; u) 2Wk 7! (�;Di �i y;Di �i u

: ij 2 Ij ; j = 1; 2; 3; 4):

Then, 	0 is continuous with respect to the underlying topology. Thus,
(	0)�1(U) is open in Wk . By the Poincaré Lemma, there exists a
meromorphic function � such that � = �(Di �i y;Di �i u : ij 2
Ij ; j = 1; 2; 3; 4) holds for all (�; x0; u) 2 (	0)�1(U). QED

In the following, an easily checkable criterion for algebraic identifi-
ability is provided after some preliminaries.

By the condition rank (@h=@x) = p, the function h in (1) satisfies
dh = H1(�)dx + H2d� + H3(�)du, where the elements of H1(�)
andH3(�) are in K(�], andH1(�) is of full-row rank in the sense that
the rows of it are independent over K(�]. As done in [11], define the
so-called observability indexes for system (1). That is, let Fk := X \

spanK(�]fdy;d _y; . . . ; dy
(k�1)g+ U +� for k = 1; . . . ; n. It is

important to note thatFn = X \(Y + U +�) and rankK(�]Fn � n,
where the definition of the rank of a module over a noncommutative
ring can be found in any textbook in noncommutative ring (see, for
example, [5]). Consider the filtration of K(�]-modules F1 � F2 �
� � � � Fn. Define d1 := rankF1, dk := rankFk � rankFk�1, k =
2; . . . ; n, ki := maxfk j dk � ig (see [3]). Then, fk1; k2; . . . ; kpg
are observability indexes and dk is the number of observability indexes
which are greater than or equal to k, for k = 1; . . . ; n. It is obvious
that k1 � k2 � � � � � kp. By the condition that H1(�) is of full row
rank, the p observability indexes are well-defined, i.e., each ki � 1,
i = 1; . . . ; p.

Now, compute

dy
(j�1)
i = �ij(�)dx+ ijd�(mod U) (4)
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for i = 1; . . . ; p and j = 1; . . . ; ki. Define

�0 =(T11; . . . ; 
T
1;k ; 

T
21; . . . ; 

T
2;k ; . . . ; 

T
p;k )T

� =(�T11; . . . ; �
T
1;k ; �

T
21; . . . ; �

T
2;k ; . . . ; �

T
p;k )T

�y =(y
(j)
i : j = 0; . . . ; ki � 1; i = 1; . . . ; p)T

then d�y � �dx+�0d�(mod U). LetN0 := k1+k2+� � �+kp, then
N0 � n, � is a matrix of the size N0 � n, and one has the following
result whose lengthy proof has been omitted due to limited space (see
[13] for details).

Lemma 1: Let F0 = X \ (� + U) then F0 = 0. Furthermore, the
matrix � defined previously is of full-row rank in the sense that all the
rows of � are linearly independent over K(�].

For any general index of integers � = (�1; . . . ; �p), suppose
dy

(j�1)
i � �ij(�)dx + ijd�(mod U), where j = 1; . . . ; �i,

i = 1; . . . ; p. If �i � ki, i = 1; . . . ; p, then denote by

y� = (�yT ; y
(k )
1 ; y

(k +1)
1 ; . . . ; y

(� �1)
1 ; y

(k )
2 ; y

(k +1)
2

. . . ; y
(� �1)
2 ; . . . ; y

(k )
p ; y

(k +1)
p ; . . . ; y

(� �1)
p )T

otherwise

y� = (y1; y
(1)
1 ; . . . ; y

(� �1)
1 ; y2; y

(1)
2

. . . ; y
(� �1)
2 ; . . . ; yp; y

(1)
p ; . . . ; y

(� �1)
p )T :

Define �� and�� to be the matrices such that the previous relation can
be written as

dy� � ��dx+ ��d�(mod U): (5)

Given any matrix A(�) with elements in K(�], denote by Li its ith
row. Define the following elementary row operations:

Use h1(�)Li + h2(�)Lj to substitute Lj , where h1(�), h2(�) 2
K(�], h2(�) has no nontrivial factor inK(�], and h2(�) is not a factor
of h1(�) in K(�].

When the above elementary operation acts on the identity matrix,
one obtains the so-called elementary matrix. Suppose �i � ki, i =
1; . . . ; p, then � is just the submatrix formed by the first N0 rows of
��. Now use the above elementary matrix, or equivalently, elementary
operation, on the relation dy� � ��dx+��d�(mod U). By Lemma
1, the N0 rows of � are independent, then one can use the N0 rows
of � to eliminate the other rows of �� (see [12, Lemma 1]). At last
�� can be transformed into (�T ; 0)T , while �� is transformed into
((��0 )

T ; (��a )
T )T , where ��0 is still the first N0 rows of ��. Thus,

there exists a matrix B(�) such that

B(�)dy� � ��ad�(mod U): (6)

Now, one has an easy characterization for algebraic identifiability.
Theorem 2: System (1) is algebraically identifiable if

and only if there exist integers J � 0, k � 0, �i � ki,
i = 1; . . . ; p, a T > 0, an open subset S1 of Wk, such that
rankK (��a )

T ; (�(��a ))
T ; . . . ; (�J (��a ))

T T
= q holds for all

(�; x0; u) 2 S1, where � = (�1; . . . ; �p). Furthermore, k can be
determined in the following way: Suppose ��1 is the left inverse of
((��a )

T ; �(��a )
T ; . . . ; �J (��a )

T )T , then by multiplying ��1 in both
sides of (6) and its shifts by �; . . . ; �J one has d� = �dy + �du for
suitable matrices � and �. The elements in � and � are functions of
f�iy(j); �iu(j); j = 0; . . . ; k; i � 0g.

Proof: By Theorem 1 one only needs to prove necessity. Suppose
d� � Ai

j;rd�
iy

(j)
r (mod U). Arrange the set S := f�iy

(j)
r ; i; j �

0; r = 1; . . . ; pg by the following ordering:

�iy(j)r > �i y
(j )
r

if and only if

[(j = j0; r = r0; i < i0) or (j = j0; r > r0) or (j > j0)]:

For any subset S1 of S , define LT (S1) to be the greatest element in S1
by the aforementioned ordering. For any two subsets S1, S2, S1 is said
to be greater than S2 if LT (S1nS2) > LT (S2nS1). Without loss of
generality suppose that the functions in set S0 := f�iy

(j)
r : Ai

j;r 6= 0g
are locally independentmoduloU andS0 is the smallest possible subset
by the previous ordering. Let v be the vector (�i y(j )

r ; . . . ; �i y
(j )
r )T ,

where S1 := f�i y
(j )
r ; . . . ; �i y

(j )
r g is the largest possible subset of

S0 with cardinality q. Then there exists an analytic function  such
that v =  (�; ~u; ~y), where ~y denotes functions in S0nS1, ~u denotes
the derivatives and shifts of the variables fu1; . . . ; umg such that
the functions in f�; ~u; ~yg are independent locally. It is obvious that
rankK(@ =@�) = q.

By the definition of ��a there exist � = (�1; . . . ; �p) and
integer r � 0 such that B(�)dy� � ��ad�(mod U), and by ap-
plying � suitably times for the rows of this equation one can solve
�rv = �(�; ~u0; ~y0), where ~y0 denotes the set of derivatives and shifts
of y which is less than the set f�r+i y(j )

r ; . . . ; �r+i y
(j )
r g, and

~u0 denotes the derivatives and shifts of the variables fu1; . . . ; umg
such that the functions in f�; ~u0; ~y0g are independent locally.
Thus �r (�; ~u; ~y) � �(�; ~u0; ~y0). By the construction of ~u, ~y,
~u0 and ~y0 one has @�=@� = �r@ =@�, and rankK(@�=@�) =
rankK(�

r@ =@�) = q. However, the matrix @�=@� is a subma-
trix of ((��a )

T ; �(��a )
T ; . . . ; �J (��a )

T )T for J large enough, thus
rankK((�

�
a )

T ; �(��a )
T ; . . . ; �J (��a )

T )T = q. QED
Remark 1: It is worthy noting that the elements in the fraction field

of K(�] are not well-defined operators on d�. For example, suppose
they are well-defined, then (1 � �)d� = d� � �d� = 0, d� = (1 �
�)�1(1� �)d� = (1� �)�10 = 0. The equality d� = 0 contradicts
with the fact that � is an arbitrary parameter. Thus one can not define
the actions of the elements in the fraction field of K(�] on d�. Due
to this reason we can not eliminate dx directly to define �a as what
was done in [11], and therefore work only in the ring K(�]. Another
important thing to note is that the above Theorem 2 requires also the
shifts of ��a in the rank condition, while the corresponding result in
[11] does not. It is because that Definition 3 permits one to represent
� by the shifts of y; u and their derivatives too, while in [11] shifts are
not permitted. In this sense, Definition 3 is weaker than the definition of
algebraic identifiability in [11] (see Example 6 of [13]). If delays are
not permitted in K, the two definitions coincide for systems without
time-delay.

C. Geometric Identifiability

Theorem 2 gives an easy criterion to tell if a system is algebraically
identifiable. The similar result holds also for geometric identifiability.
Theorem 3: The following statements are equivalent.

i) The system �� is geometrically identifiable.
ii) There exist integers r � 0, k � 0, �i, i = 1; . . . ; p,

a T > 0, an open subset S1 of Wk , such that
rankK (�g)

T ; (�(�g))
T ; . . . ; (�r(�g))

T T
= q holds

for all (�; x0; u) 2 S1, where � = (�1; . . . ; �p),
�g = ��. Furthermore k can be determined in the
following way: Suppose ��1 is the left inverse of
(�Tg ; �(�g)

T ; . . . ; �r(�g)
T )T , then by multiplying ��1

in both sides of (5) and its shifts by �; . . . ; �r one has
d� = �dy + �du + dx for suitable matrices �, �
and . The elements in �, � and  are functions of
f�iy(j); �iu(j); �jx : j = 0; . . . ; k; i � 0g.

iii) The relation d� 2 (X +Y+U) holds for all (�; x0; u) 2 S,
where S is an open subset of someWk .

iv) The system �� is identifiable with known initial conditions.

Proof: The proof of i) ) iii) is obvious, while iii) ) i) and
ii) ) i) can be proved similarly as Theorem 1.
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i) ) ii): Since i) implies iii) one has d� � C(�)dy� +

W (�)dx(mod U) for some �, C(�) and W (�), where
C(�) = r

i=1 Ci�
i. Suppose dy� � ��(�)dx + �gd�(mod U),

then (C(�)��(�) + W (�))dx � (I � C(�)�g)d�(mod U). By
Lemma 1 one has 0 = (I � C(�)�g)d� = (I � C(�)(�g))d�,
I = C(�)(�g) = (C0; C1; . . . ; Cr)(�

T
g ; �(�g)

T ; . . . ; �r(�g)
T )T , thus

(�T
g ; �(�g)

T ; . . . ; �r(�g)
T )T is of full-column rank.

iii) ) iv): Since d� = �dx + k

i=0(�idy
(i) + �idu

(i)), for
suitable matrices �, �i, �i and all t 2 [0; T ], T < 1, one obtains by the
proof of Theorem 1 that there exists a meromorphic function � such
that � = �(�i x;Dj�i y;Dj�i u : i1; i2; j = 0; . . . ; k) holds for
some open subset S2 of Wk . Since T < 1 and x(t) exists on [0; T ],
one has i1 � s, i.e., i1 2 S

�

. Let t = 0 in � then

�=�(x0(�i
+
1 ); u

(j)(�i+2 ); y
(j)(�i+2 ) : i12S�; i2; j = 0; 1; . . . ; k)

for all (�; x0; u) 2 S2.
iv) ) ii): By

� = �(x0(�i
+
1 ); u

(j)(�i+2 ); y
(j)(�i+2 )

: i1 2 S
�

; i2; j = 0; 1; . . . ; k)

the map from � to y must be one-to-one. Suppose rank � = r < q
for all � = (�1; . . . ; �p) and (�; x0; u) in any open set V0 � �W ,
where � = (�T

g ; �(�g)
T ; . . . ; �r(�g)

T )T and V0 is any open set in
q . Fix some (�0; x0; u0) 2 V0 � �W . Let �� 2 Ker�, k��k = c.

Note that �, �� can be viewed as functions of t since (�0; x0; u0) is
fixed. Define the curve segment L with parameter v = t=a, a > 0,
in the open ball U� �

q , which has radius � and center �0, such that
L = f�(v) : d� = ��dv; �(v)jv=0 = �0; v 2 [0; 1]g. When �, c and a
are small enough, one can assume thatL � U� � V0. Letdu = 0 and �
varies on L, denote y0 = ((y�)T ; �(y�)T ; . . . ; �r(y�)T )T , then there
exists a matrixG such that dy0 = �d�+Gdx = ���dv+Gdx = Gdx.
Now, y0 is a function of x and its shifts locally. When � varies onL, the
function y does not change since x and its shifts are independent of �
by Lemma 1. Thus the initial values of y and its shifts and derivatives
do not change. This contradicts with Definition 4. QED

The previous results shows that one only needs to check the ranks
of some matrices to know if a system is algebraically or geometrically
identifiable, and geometric identifiability is equivalent to identifiability
with known initial conditions.

The following proposition and two subsections are trivial general-
izations of [11] and the above results, therefore we simply list the def-
initions and results and refer the proofs to [11].

Proposition 1:

i) If a system is algebraically identifiable, then it is geometri-
cally identifiable.

ii) If X \ (Y + � + U) = X \ (Y + U), then the system
is algebraically identifiable if and only if it is geometrically
identifiable.

iii) If the system is algebraically identifiable, thenX \(Y+�+
U) = X \ (Y + U).

D. Identifiability With Partially Known Initial Conditions

Denote the i0th component of the vector function x0 by (x0)i .
Assume that initial conditions are partially known for (x0)i (�i+1 ),
i0 2 fv1; . . . ; vlg � f1; . . . ; ng, i1 2 S�, and the identifiability
problem in this case is to find whether the parameter � can be ex-
pressed as a meromorphic function of (x0)i (�i+1 ), i0 = v1; . . . ; vl 2
f1; . . . ; ng, i1 2 S�, and u, y and their derivatives or delays. Define
Xp = span

K(�]fdxi : i = v1; v2; . . . ; vlg.
Definition 5: The system �� is said to be identifiable with par-

tially known initial conditions (x0)i (�i+1 ), i0 2 fv1; . . . ; vlg �

f1; . . . ; ng, i1 2 S�, if there exists a meromorphic function � such
that

� = �((x0)i (�i
+
1 ); u

(j)(�i+2 ); y
(j)(�i+2 ) :

i0 = v1; . . . ; vl; i1 2 S�; i2; j = 0; 1; . . . ; k)

holds for all (�; x0; u) 2 S3, where S3 is an open subset of someWk .
Theorem 4: The system is identifiable with known (x0)i (�i+1 ),

i0 2 fv1; . . . ; vlg � f1; . . . ; ng, i1 2 S� if and only if d� 2 (Xp +
Y + U) holds for all (�; x0; u) 2 S3, where S3 is an open subset of
some Wk .
Corollary 1: For any two sets of known initial conditions X 1

p , X
2
p ,

and X 1
p � X 2

p , if the system is identifiable with X 2
p , then it is identifi-

able with X 1
p .

E. Persistent Excitation and Singularities

Definition 6: A pair (x0; u) is algebraically (respectively,
geometrically) persistently exciting for �0 if there exist J ,
�, such that ((��

a )
T ; �(��

a )
T ; . . . ; �J (��

a )
T )T (respectively,

(�T
g ; �(�g)

T ; . . . ; �r(�g)
T )T ) is of rank q for when evaluated

at x0, �, and u.
Note that the matrices �i(��

a ) and �i(�g) are functions of x0, �, u
and derivatives of u. To make the matrices to be of full column rank,
x0, �, u and derivatives of u need to provide “sufficiently rich” signals.
In this sense, the previous definition conforms with the linear concept.

It is clear that when (x0; u) is algebraically (geometrically) persis-
tently exciting, the parameters can be determined at least locally around
(x0; u) by u, y, x0 and their derivatives and delays. When (x0; u) is
not algebraically (geometrically) persistently exciting for �0, then it is
called to have an algebraical (a geometrical) singular point for the iden-
tifiability of �0.

IV. EXAMPLES

Example 1 shows the essential difference between themethod in [11]
for systems without time-delay and the method in this note for systems
with time-delay. In fact, [11] uses the inverse of some coefficient sub-
matrix of dx to represent dx as a linear combination of d� and the
derivatives of dy. In the case of time-delay systems, the corresponding
submatrix may not be invertible in K(�], and K(�] is itself a noncom-
mutative ring where division is not defined, one has to use row opera-
tions defined in this note instead. The difference shows again that the
method of the present note is not simply a trivial generalization of [11].
Example 1: Consider the following example:

_x1 = �1x2 _x2 = �2x
2
1; y = x1:

Following the calculation steps in [11], one has that

dy

d _y

d�y

dy(3)

=

1 0

0 �1
2�1�2x1 0

2�21�2x2 2�21�2x1

dx1
dx2

+

0 0

x2 0

�2x
2
1 �1x

2
1

4�1�2x1x2 2�21x1x2

d�1
d�2

:

It is obvious that the system is geometrically identifiable generically
since the coefficient matrix of (d�1;d�2)T has full column rank gener-
ically. Since the submatrix diag(1; �1) is invertible, one can represent
(dx1;dx2)

T as a function of d�1, d�2, dy, d _y by multiplying the in-
verse ofdiag(1; �1) to the equations ofdy andd _y. Substituting this into
the equations for d�y and dy(3) one has that the coefficient matrix for
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(d�1; d�2)
T is not of full rank, that is, the system is not algebraically

identifiable.

Now, consider a time-delay system which has the same state equa-
tions as above but with a delay in the output y(t) = x1(t � 1) =
�(x(t)). Similarly, one has

dy

d _y

d�y

dy(3)

=

� 0

0 �1�

2�1�2�(x1)� 0

2�21�2�(x2)� 2�21�2�(x1)�

dx1
dx2

+

0 0

�(x2) 0

�2�(x
2
1) �1�(x

2
1)

4�1�2�(x1x2) 2�21�(x1x2)

d�1
d�2

:

By the convention of this note, the previous two coefficient matrices
are denoted by �3 and �3 respectively. Note that the matrix �1, which
consists of the first two rows of �3, is not invertible in K(�], and one
can not solvedx1,dx2 aswhat was done in the casewithout time-delay.
However, the third and fourth rows of �3 can be eliminated by the first
two rows through the elementary row operations defined in this note.
At last, one obtains

d�y � 2�1�2�(x1)dy

dy(3) � 2�21�2�(x2)dy � 2�1�2�(x1)d _y

=
�2�(x

2
1) �1�(x

2
1)

2�1�2�(x1x2) 2�21�(x1x2)

d�1
d�2

:

The aforementioned coefficient matrix is just �3
a. Note that in the case

of systems without time-delay, one only needs to check if this coeffi-
cient matrix of d� has full-rank over K. In the case of systems with
time-delay, one needs to check the rank of �3

a over K(�] instead of K.
That is, one needs to consider if there exists a j such that the matrix
(�3

a)
T ; (�(�3

a))
T ; . . . ; (�j(�3

a))
T has rank 2 over K. However the

rank is always 1. Thus the time-delay system is geometrically identifi-
able generically but not algebraically identifiable.

Models of population dynamics [4] or biomedical dynamical sys-
tems [6] provide practical examples of time delay systems due to re-
production or to out-spreading of some disease. One elementary model
is taken in Example 2, from [2]. The time-delay is the developmental or
maturation time and is “naturally” known for some population, whereas
the death rate parameter needs to be identified, depending on the pop-
ulation conditions.

Example 2: Consider a populationN whose size changes according
to the population growth equation [2]

_N = B(N(t� � ))N(t� � )� �N (7)

where � > 0 is the constant death rate, in the absence of disease.
B(N(t � � ))N(t � � ) is a general nonlinear birth rate and � is the
average developmental or maturation time.When the population is sub-
ject to an epidemic disease causing death, then the death rate increases
and should be identified. Obviously

� =
B(N(t� � )N(t� � )� _N(t)

N(t)

and system (7) is algebraically identifiable from the measured output
N(t) in the sense of Definition 3, whenever N 6= 0, which is not
restrictive in practise.

V. CONCLUSION

In this note, different notions of parameter identifiability for non-
linear systems with time-delay are presented. The relations between
them are characterized by linear algebra based on differential forms.
The easily checkable criteria for algebraic and geometric identifiability
have been given. The whole approach was developed for systems with
commensurate delays. If several noncommensurate delays are present
in the system, then it is possible to employ “polynomials” of several
variables. This adds complexity to the notations and is not explicitly de-
veloped here in this note. We also believe that the results and methods
in this note should be able to apply to the nonlinear discrete time system
with time-delay. We leave this to interested readers.
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