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Complex Dynamics of Systems Under
Delta-Modulated Feedback
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Abstract—In this paper, we cast the design of�-modulated con-
trol of a high-order system into the study of control Lyapunov func-
tions. We classify the complex dynamics of the closed-loop system
in three cases. In the first case, we show how �-modulated feed-
back introduces a finite set of globally attracting periodic points.
We find the numbers and periods of all possible such periodic or-
bits. In addition, we characterize the attracting region for each of
such periodic points. In the second case, we show that there is a
maximal “stabilizable” region, and inside this region, there is a
local attractor. In the last case, we show that all the states stabi-
lizable by the�-modulated feedback constitute a Cantor set. This
Cantor set is a repeller, and the closed-loop system is chaotic on the
Cantor set.

Index Terms—Attracting region, attractor, Cantor set, chaos,
control Lyapunov function, delta-modulation, repeller.

I. INTRODUCTION

WE CONSIDER a discrete-time control system of order

(1)

where and are real, , and the scalar control takes
a -modulated feedback form

(2)

in which , and , when , and
, when .

A practical example of this kind of control is the transmit-
ting power control of a mobile unit in the direct sequence code
division multiple access (DS-CDMA) cellular network. A sim-
plest model is given by (1) and (2) with and , and
the “state” is the error of the mobile unit’s power level re-
ceived at the base station with respect to the desired value (both
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in decibel, dB). The control action stems from a simple and in-
tuitive idea: When the level of the received power is higher than
the desired level, it is decreased by dB, and when the level
of the received power is lower than the desired level, it is in-
creased by the same amount [1]. There is only one design pa-
rameter, , and the power increment is either or . This
scheme is called a delta modulation (DM) transmitting power
control. An advantage of such a control is that can be stored
at the base station or the active mobile unit, and the base sta-
tion only needs to send 1 or to command the increase or de-
crease of the power level. In other words, only one bit of datum
is necessary for the implementation of the DM control. The re-
quirement of one bit for transmitting power control is the stan-
dard of IS-95 [21]. Other control schemes with multiple power
levels have been proposed for the third generation of CDMA
technology, but some of them offer only marginal improvement
in the practical multifading environment [26]. -modulation is
a method of converting analog signals to digital signals. In elec-
tronic circuits, such a method of analog-to-digital conversion is
also called modulation, which was introduced much ear-
lier in [18], [5] and studied in depth for the “leaky” case (when

and ) in a number of later publications [19], [15],
[23]. -modulation has since been widely used in digital elec-
tronics and telecommunication. One recent study [6] is on dig-
ital bang–bang phase-locked loops, where periodic orbits and
the control performance are evaluated. The interests of -mod-
ulation in digital electronics are demodulation schemes, statis-
tical properties of the digital outputs as well as the complex dy-
namics involved.

In this paper, one of our objectives is to justify the design in
(2) in a control system framework. This is achieved through an
investigation of control Lyapunov functions (CLFs) for a gen-
eral class of systems

(3)

where is the state, denotes the system state at the
next discrete-time, is an matrix of real numbers, and
is a column vector of real numbers.

The results we obtain in this paper are natural generalizations
of those in [28], where we considered the first order system (1)
(when ).

Our first results concern with “stable” systems of (1) when
. In [28], we showed that -modulated feedback can

generate one periodic solution with period 2 or two periodic
solutions with period 1 (that is, two equilibria). In particular,
there is one periodic-2 orbit, but no periodic-1 orbit, on the
closed invariant interval . This is a major departure
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from what the famous Sarkovskii theorem [25] claims about
periodic points of continuous mappings on a closed-interval.
Note that -modulation introduces discontinuity, and the theory
of continuous dynamical systems does not apply to it. We will
show that a -modulated feedback also introduces periodic or-
bits of different periods in the higher order case. We will further-
more find all possible such periods, and for each of such periods,
we will also find the number of periodic orbits. In addition, we
will show that the set of these periodic points has points
and the set is a globally invariant attractor for the closed-loop
system. Finally, we will characterize the attracting region for
each of such periodic points. We will note that high order re-
sults are no simple generalizations of the scalars ones. For ex-
ample, a sixth-order system (1) with does not only
have 6-periodic points, but also 1-, 2-, and 3-periodic points. A
sixth-order system with has only 4-periodic and 12-pe-
riodic points.

The determination of self-excited oscillations or limit cycles,
originated in the work of Poincaré and Lyapunov, is an old and
difficult problem in the classic qualitative theory of dynamical
systems [16]. It is known that the mechanism of generating pe-
riodic orbits by -modulated feedback is very complex [30],
[31]. Apart from their theoretical interests, these results are of
practical importance. For instance, the digital output signals of

modulation are nonwhite [15], the spectrum information of
these signals are crucial in helping developing preventive mea-
sures if they are necessary.

-modulated control is bounded, bang–bang, and also a spe-
cial kind of quantized control, which are topics of longstanding
interests in the control community [17], [7], [8], [4], [22], [11],
[2], [12], [13], [20]. -modulated control is a two-level quan-
tized control, and a quantized control is a cascade of -modu-
lated controls. The study of -modulated control will eventu-
ally be helpful in the implementation of a quantized control. On
the other hand, the recent interest in quantized control has been
focused on the design of quantization levels for the purpose of
stabilization, the quantification of information flow and the con-
vergence time. Particular interests are given to (controlled) in-
variance arising from quantized control.

In this regard, our second and third results to be briefly de-
scribed below are very much relevant.

Our second results are devoted to the case when .
We will show that there is a maximal “stabilizable” region, and
inside this region, there is a local attractor whose size is inde-
pendent of the value of . The control-theoretical significance
of this result is obvious: -modulated feedback offers some,
though limited, stabilizability capabilities for unstable systems.
This result also captures a convergence property of the pro-
posed -modulated feedback control. For scalar systems under
quantized feedback control, this kind of convergence property is
characterized by the so-called -stability in [12] where the
interest is to see whether two “intervals” exist such that all points
in the “stabilizable region” are steered to the “controlled-in-
variant attractor” .

Our last result shows that when , all the states stabiliz-
able by the designed -modulated feedback constitute a Cantor
set. This Cantor set is a repeller, that is, any state outside this
set is steered away from this set (actually to infinity). On the

Cantor set itself, the system is chaotic. Chaos have long been
found in association with quantization in digital filters and dig-
ital control systems [7], [8]. The construction of the Cantor set
offers a detailed study of chaotic behaviors. In particular, this
shows that the Cantor set is the closure of all the periodic points
of the -modulated orbits of the system, therefore, it is a min-
imal controlled-invariant set containing all the periodic points.
This result is also insightful: Though most of the research in
controlled-invariance introduced by (quantized) feedback con-
trol is focused on the maximal controlled-invariant set (see [3],
[24] and the references therein), a minimal controlled-invariant
set can sometimes be properly defined and constructed. Note
also our discussions on Cantor set here is constructive, com-
pared with some existence proofs of the scalar case in [28].

The layout of the paper is as follows. In Section II, we study
some properties of control Lyapunov functions (CLFs) and de-
scribe the design procedure of -modulated feedback based on
a CLF. Sections III, IV and V are devoted to detailed studies of
the above three cases, respectively. Some concluding remarks
are given in VI.

II. CLF AND -MODULATED FEEDBACK

Assume that (3) is stabilizable. It is, therefore, quadratically
stabilizable in the sense that there is a control input , which is a
function of , that makes a quadratic function of the state a valid
Lyapunov function for the closed-loop system. Such Lyapunov
functions are called CLFs.

Given a quadratic CLF, with , where
is always assumed to be symmetric in this paper, we look

for a control input such that is decreasing along the
trajectories of system (3), i.e., for

(4)

Given , it is easily verified that the following input:

(5)

defines the gradient descent direction making decrease the
most along the trajectories. Under feedback (5), we have, for the
closed-loop system

For convenience, denote

(6)

By the assumption that is a CLF, .
Given , two inputs making [as defined in (4)] zero

can be found as

(7)
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Lemma 1: [11] Let , be a CLF of
system (3). For any , define the following set:

. Then
i) ;

ii) for ;
iii) for any .
Further properties of and , and of the CLF

, are described by the following lemmas.
Lemma 2: The following statements are equivalent.
i) System (3) is stable.

ii) There is a Lyapunov function, ,
such that .

iii) There is a CLF , such that
the corresponding and in (7) satisfy

.
Proof: The conclusion follows from the following calcula-

tions:

The interpretation of this lemma is clear: there are input
values with different signs at any state to decrease the CLF if
and only if the open-loop system is stable.

Proposition 1: Let be a CLF for system (3),
and be the generalized eigenvalues of the matrix
pair in a decreasing order. If , the spectrum
radius of , is greater than 1, then .

Two different proofs of this result can be found in [10] and
[29], respectively. The later contains also results for continuous-
time systems.

Define a set, . By
Lemma 1, if , then there is control input bounded by
such that is decreasing at along the system trajectories.

Lemma 3: is a bounded and closed set containing the origin.
Proof: By the definition of , we have

These imply .
From Lemma 1, we see that there is a -modulated control to

decrease the CLF if or . The next
lemma gives a natural choice of such a -modulated feedback.

Lemma 4: If or , then
.

Proof: We show that implies
.

This implication is obvious when is nonnegative.
When is negative, first of all,

, in which the last inequality follows from the as-
sumption that .

On the other hand, since

we have

and is negative, so we further have

or . That is, .
Similarly, we can prove that if

.
Due to this result, we assume that the -modulated feedback

is designed according to

(8)

Lemma 5: Let be a CLF for (3). For the
closed-loop system under control of the -modulated feedback
(8), define the following set:

i) When

and it is the intersection of two ellipsoids in with cen-
ters at and

, respectively.
ii) When consists of three parts: The intersec-

tion of the intersecting sheets of two hyperboloids of two
sheets in , and the insides of the two nonintersecting
sheets of the two hyperboloids.

Proof: First of all, note that when , system (3) is
stable; therefore, from Lemma 2, and .

Then, it is easy to see (from Lemma 1) that

On the other hand, if , then .
From here, it is easy to see that

.
Note moreover that in both cases of and

is nonsingular: in the first case, is
positive definite; and in the second case, according to Proposi-
tion 1, and , for , so
is also nonsingular.
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Having this, in order to prove the rest of parts i) and ii),
we first do the following calculations (denote

):

(9)

where .
When , the previous inequality becomes

When , it becomes

Now, it is easy to see that when , the last two in-
equalities define two ellipsoids, and when , they are
two hyperboloids of two sheets.

The two situations are depicted in Fig. 1.
Now, we return our attention to (1) in the rest of this paper.

A controllable canonical realization of the system (1) takes the
following form :

. . .
...

...
...

. . .
. . .

... (10)

For such class of systems, the following result characterizes
when a diagonal matrix gives a CLF.

Proposition 2: For (10),
, is a CLF if and only if

.
Proof: The conclusion is implied by the following calcula-

tions:

Due to this result, the -modulated feedback (8) for this class
of systems becomes

(11)

where is the first component of . For notational conve-
nience, denote the closed-loop mapping of system (10) under
the feedback (11) as

(12)

1) Definition 2: When , system (10) is classified to
be of type-I, and when , type-II.

III. GLOBALLY ATTRACTING PERIODIC SOLUTIONS: CASE

From now on, we denote , and define the following
set of points:

The following property of is immediate; its proof is there-
fore omitted.

Lemma 6: For any CLF of system (10),
, and for the closed-loop system under control

of the -modulated feedback (11), define

Then, , where is a sphere centered at the origin
with radius .

A. Periodicity

The set contains exactly all the periodic points. The fol-
lowing results also characterizes all the periods.

Theorem 1: Any is a periodic point of the closed-
loop system under control of the -modulated feedback (11).
For type-I systems, a positive integer is a period for some

if and only if is not a divisor of , but a divisor of . For
type-II systems, a positive integer is a period for some
if and only if is a divisor of .

Proof: For any , if we denote
, then

Similarly, if we denote , then for

(13)

For type-I systems, , (13) leads to , which
implies that is not the period for any point in and, there-
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Fig. 1. Illustration of Lemma 5, with DV (x) � 0.

fore, a positive integer ; that is, the period of a point in does
not divide .

With the same kind of reasoning, we have . There-
fore, every point in is a periodic point of , and a positive
integer is the period of a point of only if it is a divisor of

but a divisor of .

On the other hand, if a positive integer is a divisor of ,
but not a divisor of , then, according to the integer division
algorithm, there exists a non-negative integer and a positive
integer , strictly less than , such that

(14)
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From the aforementioned expression of , it follows that di-
vides implies divides , that is, for some positive
integer . Because , it follows necessarily that ,
and therefore . From (14), we have

.
Construct the following vector of numbers:

It is easily seen that the vector obtained via multiplying this
vector by belongs to and has period .

For type-II systems, , and (13) leads to . This
proves that every point in is a periodic point of , and an
integer is the period of a point in only if divides .

On the other hand, if divides , we can construct the fol-
lowing vector of numbers:

This vector belongs to and has period .
In the following, we will prove that when , there

are no other periodic points outside . To this end, we first
prove the following lemmas.

Lemma 7: For any , denote the -th components of
and , by and , respectively. Then

(15)

Proof: By the definition of the -modulated feedback (11),
for any

Generally, for each , we have

(16)

In particular

(17)

where .
From (17), for any two points
i) when

;
ii) when

.
These show that .

Generally, for any natural number , we have
. Therefore,

.
In particular, take , we know from the definition of

and Theorem 1, that for all .
Hence, we arrive at conclusion (15).

Lemma 8: Suppose and let be an initial
state. Then, for the orbit starting from , the
following conclusions hold true.

i) For , the sub-sequence , has
a limit when , and .

ii) For , the sub-sequence , has
a limit when , and .

Proof: For any given point , denote
by . According to Lemma 7,

the sequence must be conver-
gent and converges to the point , where

. Remember the norm
for . It is calculated that , there
exists a natural number such that for all

. Therefore, the following hold.
i) When , it is easily to see from formula (17)

that and are the same when
. Hence, one can conclude that the se-

quence is convergent and
converges to some point in .

ii) When , one can verify, based on formula (17)
again, that when .
Hence, the sequence is
convergent and converges to some point in .

Theorem 2: is a global attractor of system (12).
Proof: We first prove the invariance of .
For any , in which

, we have proven in (13) that

implying that . On the other hand, for any
, suppose is the period of . Then,

, hence, .
We next prove that is globally attracting. For any given

point , let . Then,
from Lemma 8, for , these sub-sequences

, and for ,
, are all convergent (or for-

ward asymptotic [9]) to . This implies that is globally
attracting.

Theorem 3: When , denote , where

, and , are different prime factors of in
increasing order. Then, the following conclusions hold true.

i) When consists of only one forward orbit of
period 2 for systems of type-I, and two equilibria for sys-
tems of type-II.

ii) When , for systems of type-II, a positive integer
is the period of a point if and only if it takes the
form

(18)

There are two periodic-1 (fixed) points in .
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For any of the form (18), let , be the
smallest prime factor of , i.e., .
Denote . Then, the number of distinct periodic
orbits in with period equals .

For systems of type-I, factorize into the form

(19)
Then a positive integer is the period of a point if and
only if it takes the form

(20)

There is one periodic-2 orbit in .
For any of the form (20), let , be

the second smallest prime factor of , i.e.,
. Denote . Then, the number of distinct

periodic orbits in with period equals .
Proof:
i) When contains only two points. According to

Theorem 1, it is clear that both points are equilibria for
systems of type-II, and they form a periodic orbit with
period 2 for systems of type-I.

ii) According to Theorem 1, a positive integer is the period
of some periodic point if and only if it is a divisor of .
The expression (18) is a parameterization of all the factors
of . Since is the number of periodic orbits in with
periods less than or equal to , it follows the conclusion
about the total number of periodic orbits with period .

iii) Again, according to Theorem 1, a positive integer is the
period of some point if and only if it is a divisor of
but . It is straightforward to verify that the expression in
(19) is a parameterization of all such integers.

B. Attracting Regions

Since all the periodic points in are attracting, it will be
useful to know the attracting region for each of the periodic
points.

First, we introduce a concept. For any real number , the char-
acteristic index is defined as the following non-negative in-
teger:

where denotes the integer part of a real number. For any
, the characteristic index is an -vector ,

in which is the characteristic index of , for .
Lemma 9:
i) For any , and for each , the char-

acteristic index is the smallest non-negative integer
such that .

ii) For systems of type-I, is the smallest non-negative in-
teger such that and have opposite
signs.

iii) For systems of type-II, is the smallest non-negative
integer such that and have the same
sign.

Proof: We prove the result only for systems of type-I. Proof
for systems of type-II can be worked out in similar lines, and is
therefore omitted.

For systems of type-I, according to Lemma 8 and the proce-
dure of the proof for the lemma, it is easy to understand that

if and only if and have dif-
ferent signs.

For , by (17), we have
— if , then

— if , then

It is straightforward to verify that the real number
satisfies

Therefore, it is easy to see that is the smallest integer
such that changes sign. The conclusions of the lemma
follow.

The analysis in the previous proof can be useful in finding
the limiting periodic points in . We do this separately for the
two types of systems.

Note that for systems of type-II, we have

...

By ii.2) of Lemma 9, has the same sign as , for
. Therefore, for ,

we have

...
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Denote the limit of by . Then, for each ,
we can solve from

to obtain

For systems of type-I, first let be the next even integer
or zero after (that is, if is even (or zero), and

if is odd). Then, from ii.1) of Lemma 9,
has the same sign as , for .
Therefore, for , we have

...

Denote the limit of by . Then, for each ,
we can solve from

to obtain

Summarizing the above development, we have the following
characterization of the attracting region for a periodic point in

.
Theorem 4: For any , denote its characteristic index

as . A generic periodic point in is denoted
as , for

.
i) For systems of type-I, belongs to the attracting region

of if and only if for ,

for even
for odd

ii) For systems of type-II, belongs to the attracting region
of if and only if for .

The attracting region for a two-dimensional case
is visualized in Fig. 2. In this case, there are four periodic

points: the two in the first and third quadrants are fixed (1-peri-
odic) points, and the two in the second and the fourth quadrants
are 2-periodic points. The plane is divided into four (discon-
nected) parts marked by different strips. All points in each of
these four parts are attracted to the corresponding periodic point
in the same part.

Fig. 2. Attracting region: The two-dimensional case with a > 0.

IV. LOCALLY ATTRACTOR WITH BOUNDED ATTRACTING

REGION: CASE

For convenience, denote the product of times of a region
, by . We also use the following nota-

tions:

Theorem 5:
i) When is an invariant set of the closed-

loop system (12), i.e., .
ii) When is an attractor with the attracting

region .
Proof:

i) We only prove the results for . Note

(21)

it is obvious that, when for all .
, in turn, implies that . That

is, , or . On the other hand, a
point is equivalent to for all .
Hence, we have ,
when , and

, when .
One verifies that for .

Hence, we have proved .
i) At first, we show that
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when . As a matter of fact, for any
, there exists an , such that
. We have

if
if and

and

Therefore, .
Furthermore, when , it follows that there exists

an , such that , and

.

That is, , any point in tends to the
invariant set .

The “boundary” case when deserves special attention.
Theorem 6: When , the following conclusions hold

true.
i) The region is a global attractor.

ii) A point is a periodic point if and only if .
In particular, every point is a periodic point with
a period .

iii) For Type-I systems: iii.1) There is no periodic
point for any .

iv) A positive integer is a prime period of some point if and
only if is even, and a divisor of but . In this case, if
denote and , then a point
is an -periodic point if and only if

for some .
v) For Type-II systems:

vi) a point is of period if and only if

where ;
vii) a positive integer is the prime period of some point

if and only if is a divisor of .
Proof: First of all, for a given positive integer and

, denote

by .
i) Here, we only prove the conclusion for Type-I systems.

The proof of the conclusion for Type-II systems can be
similarly carried out.

From (21) and the inequalities

we have

Besides, when , since for any

(22)

and from the expression , for each ,
we have

Therefore, for every , it follows that

In particular

Furthermore, it is not hard to verify that the inequality

holds true for all and . Clearly, this inequality
implies that conclusion i) holds true for Type-I systems.

i) From conclusion i), it is easily seen that there is no pe-
riodic point in the region . For Type-I systems,
when , by (22), one gets

The equality implies obviously ,
for all . Moreover, it follows that .
Similarly, one can verify the conclusion for Type-II sys-
tems.

ii) At first, from the proof of the conclusion ii), it is ob-
vious that for all . Generally, for
any nonnegative integer , denote for each

. Then, it follows that

It is obvious that the second term at the right side of the
previous equality does not equal zero, so

.
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iii) The proof of the conclusion can be similarly done as the
proof of Theorem 1.

iv) The two conclusions are two special cases of Theorem 1
for Type-II systems.

V. CHAOTIC REPELLER OF CANTOR SET: CASE

We will show in this case that the “stabilizable” set is a Cantor
set. We will give a construction of this set, and show that it is a
repeller of the closed-loop system, and the closed-loop system
is chaotic on it.

A. Preliminaries

In this paper, we use the definition of chaos as follows.
Definition 2 [14]: For an attractor or repeller of the dynam-

ical system (14), the motion of (12) is called chaotic on if
i) there is an , such that the orbit is dense in

;
ii) the set of periodic points of in is dense in ;

iii) is sensitive to initial conditions, that is, for any , there
is a , a in arbitrary close vicinity of , and an
integer such that .

First of all, we have the following result about periodic points.
Lemma 10: Suppose . Then, for each , a point

is a periodic point with period of Type-I systems if and
only if it has the following form:

(23)

It is a periodic point with period of Type-II systems if and
only if it has the following form:

(24)

where for all
and .

The same result was obtained in [30] for the scalar case
. The proof of Lemma 10 can be worked out in similar lines,

thus omitted here.

B. Construction of Cantor Set

The construction of the Cantor set is given in the following
lemmas.

Lemma 11:
i) Suppose . For , there exists a closed

set such that

ii) For , and
.

iii) Define for

(25)

then

(26)

(27)

iv) , where is the Euclidean
measure of a region in the -dimensional space.

Proof:
i) Due to (17), it is readily constructed that

(28)

Similar constructions exist for , for .
ii) According to the definition of the system of the regions

, one sees that if and only if
.

Furthermore, since for all
and , the first equality in ii) holds
true.

It is easily verified that the second equality in ii) holds true
for . Assume it holds true for some . Then, we have

i) Formula (26) follows directly from conclusion ii). To
prove (27), we first discuss the case . Let be a
point in . Then, for Type-I systems, by the ex-
pression ,
one can verify that the inequalities

hold true for all ,
therefore, .
For Type-II systems, by the expression

, one can similarly get the
result .
Generally, with respect to the aforementioned result, for
every , there exists a point such
that . Moreover, , there-
fore, according to the definition of the region , we
have . This means, of course,
that .

ii) By mathematical induction, when , for both Type-I
and Type-II systems, it is routine to verify the following
results:
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Hence, we get that

and thus .
Assume iv) holds true for some . For , by (26) and

the assumption of the induction, one gets

On the other hand, by (27) and the monotonicity of the mapping
along the direction of each coordinate axis on the region

, it is easily verified that, for every
. Hence, we conclude that

Lemma 12:
i) For and

(29)

ii) is symmetric about the origin of the -dimen-
sion space.

Proof:
i) This can be routinely verified by the definition of and

the expressions of [refer to (16)].
ii) From (28), it is clear that the two sets and are

symmetric. Therefore, the symmetry of these two regions
means the symmetry of the set .

Assume that assertion i) holds true for some and
. For , by the definition of the region

, it is clear that if

and only if .
Furthermore, by the symmetry of the region , a point

if and only if

for each .
Denote by . If

, then for Type-I sys-
tems, . Therefore, when

, which is equivalent to the
inequality . Furthermore, it is not
hard to understand that the inequality holds true if and only
if , i.e.,

. When , one can similarly get that
, which is equivalent to the inequality

. By the same argument, the inequality
holds true if and only if ,
i.e., . Thus, we see that the region

is also symmetric.

It is easily seen that the above procedure in the proof of con-
clusion for Type-I systems shows that the conclusion also is true
for Type-II systems.

Lemma 13:
i) Under the -modulated feedback (11), the set of all sta-

bilizable states of system (12), i.e.,

(30)

is a Cantor set in .
ii) The box dimension [14] of the set is given by

.
Proof: In the following, we prove the result only for the case

of Type-I systems. The proof for the case of Type-II systems can
be similarly carried out.

i) It is not hard to understand that a state is stabi-
lizable under the -modulated feedback (11) if and only
if .

In order to show that the set is a Cantor set, we need only
to prove that the set is compact, perfect, and totally disconnected
according to the definition of a Cantor set.

i) By definition, every region is compact and all
these regions form a nesting sequence of compact sets.
Therefore, is also compact. Furthermore, it is easily
verified, for each and , that there are
some points on the boundary of which belong
to , for example, the point .
So, is nonempty.

ii) Now, we prove that the set is perfect. Firstly, a point
must lie in for every . By Lemma 11.iv),

we see that . This shows that those
points on the boundary of converge to , i.e., every
point in is an accumulation point.

iii) The following fact that

(31)

implies that there is no connected region in , i.e., is
totally disconnected.

iv) By the definitions of and , we know that the region
separates into two -dimensional

cuboids with the length of the short sides given by

Similarly, the region separates into
four -dimensional cuboids with the length of the short
sides being the same as . Therefore, we can conclude
that the region separates into -dimension
cubes with the length of sides equal to . i.e., the region

is the collection of -dimensional cubes with the
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side length . Generally, by the symmetry of and
the proportion formula in Lemma 11.iv) of volumes about

, it is easily understood that the region is a
collection of cubes with the side length

(32)

Therefore, it is obvious that, for every , the collec-
tion of cubes is a covering of the region . Hence,
by the calculation formula of the box dimension [14], the
box dimension of the region is obtained as

C. Chaotic Repeller

Theorem 7:
i) is invariant under the -modulated feedback control

(11) and is a repeller of the closed-loop system (12).
ii) A point if and only if the point has the form

(33)

where the definition of is the same as those vector pa-
rameters in Lemma 10.

iii) The closed-loop system (12) is chaotic in .
Proof: Again, we prove the result only for the case of Type-I

systems.
i) First of all, we prove that is invariant under the -

modulated feedback (11). As a matter of fact, by the def-
inition of the region , we know that a point
is equivalent to for all .
Therefore, we must have that , i.e.,

.
On the other hand, the assertion is directly im-

plied by (26).
i) It is clear that if and only if there

exists a subscript , such that
. In the following, we prove that
if . In fact, the assertion

follows directly from (21) and the inequalities

.

The previous conclusion shows that an orbit of the closed-
loop Type-I systems will be outside of the region

if its initial state is outside of this region.
Moreover, according to Lemma 11, one gets that

(34)

Therefore, a point only if for
some , hence, by the definition of , we know that

.
From the aforementioned discussion, we see that the set
is a set of all unstable states of the system in .
i) A point if and only if

for all . When , denote
. Then, for all , by the equality

we get that

Letting tend to infinity, and combining the equality

with the two facts that

and , we have

i.e., has the form of (33).
Assume a point has the form of (33). Then, it means
that

Since, for every and , the following
inequalities hold:

it follows that, when
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and when ,

The previous results show that
and is a continuous point of both and
when has the form of (33). Therefore, the following
calculation procedure is feasible:

By the same kind of argument, we can prove that the
point is also a continuous point of the maps
and . Generally, one can verify, for all , the
following:

Hence, we can conclude that the point .
ii) We first prove that the set of periodic points of the closed-

loop system (12) is dense in . For a given point
, we have that

By Lemma 10, we know that the point

is a periodic point with period ; therefore

and

Hence, noticing that for all
, we conclude that .

Since and, therefore

we know that the set of periodic points of the closed-loop
system (12) is dense in .

iii) In the following, we prove that the closed-loop system
(12) has sensitive dependence on the initial conditions
on the set . To this end, we first reveal a character-
istic of orbits of , that is, for any two given or-
bits and of in ,
there exists an such that

if for some subscript . The
assertion follows directly from the fact that a point

only if

for all subscripts .
Let . If there exists a point
and a positive number such that there is a point

which satisfies , and

for all , then, based on the previous discussion, we know
that the equality holds true for all

. Hence, every point in the straight line
, has the property: .

Besides, the following equalities:

imply that . Generally, one can
verify by mathematical induction that the two equalities

and
hold true for all . Hence, one gets

By the definition of
for all . This means that the straight-line

must belong to some cube in for every
. It is obviously impossible since the length of side of every

cube in tends to zero when tends to infinity.
i) Finally, we prove that the system has an orbit which

is dense in . To this end, we need the following
preparative knowledge: For any given , let
be the smallest integer which satisfies the inequality

, then, for all
and

, the following inequality holds true:
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Moreover, as we have shown that is a compact set, ac-
cording to the well-known finite covering theorem, there are a
finite number of open sets which cover . In particular, for
any given , from (32), there must exist such that
the length of the diagonal of each cube in is less than .
Hence, when we denote the center of the th cube of by

, the set is covered by these open
balls and so is . When ,
denote by , an arbitrarily chosen
point in . Let us now con-
sider the point

(35)

where the meanings of and are the same as those in (33).
Based on the previous discussions, it is not hard to verify that,
for every ,

(36)

By (35) and (36), for every
.

This shows that, for any , there is an orbit in with the
property that for any point , there exists at least a point

in the orbit such that .

VI. CONCLUSION

In this paper, we have presented a design of a -modulated
feedback control of a high-order system based on the technique
of control Lyapunov functions. We have classified the complex
dynamics of the closed-loop system in three cases. In the first
case, we have found all possible periodic orbits for their num-
bers and periods, together with characterizations of their at-
tracting regions. In the second case, we have shown that there
is a maximal “stabilizable” region, and that inside this region,
there is a local attractor whose size is independent of the value of
the parameter . In the last case, we have shown that all the states
stabilizable by the -modulated feedback constitute a Cantor
set; this Cantor set is a repeller; and the closed-loop system is
chaotic on the Cantor set. This study, along with [26]–[28] and
[30]–[33], has now provided a relatively complete picture about
the dynamics of the -modulated feedback control mechanism,
useful for control engineering design and applications.
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