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(15) can be stabilized by the proposed hybrid output feedback control
scheme for a wide range of variations in the detecting time � .

IV. CONCLUDING REMARKS

In this note, a new hybrid output feedback control scheme was pro-
posed to stabilize a class of continuous-time LTI systems with single
output. The arguments were based on the multirate sampling technique
and the Multiple-Lyapunov-Function theorem. While this note focused
only on the single output case, the proposed design procedure could
be extended to the case of multi-output (i.e., p > 1) without essen-
tial changes. In addition, the multirate sampling scheme can be ex-
tended via detecting the output y(t) more than once within a sam-
pling period Ts, e.g., over a sequence of detecting time 0 < �1 <

�2 < � � � < �k < Ts. Then, with more information on y(t), it be-
comes possible to further partition the state space and design more
multiple-output feedback gains correspondingly, and hence improve
the chance to stabilize the system. A natural question is how generic
the method could be. We ask whether it is always possible to find a
pair of sampling period Ts and detecting time � (or a sequence of de-
tecting time 0 < �1 < �2 < � � � < �k < Ts) such that the system
(assumed to be reachable and observable) can be stabilized by the pro-
posed multiple SOF controller scheme. If not, what conditions the state
matrices fA;B;C;Dg should satisfy?
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Adaptive Synchronization for Generalized Lorenz Systems

Xiyin Liang, Jiangfeng Zhang, and Xiaohua Xia

Abstract—In literature it is conjectured that the states of the generalized
Lorenz system with an unknown parameter can not be estimated by adap-
tive observers. In this paper we show that this unknown parameter and the
states can actually be estimated simultaneously by some kind of adaptive
observer. The proof is obtained by constructing some exponential observer
to achieve chaotic synchronization for the generalized Lorenz system. The
result implies that more work needs to be done to apply generalized Lorenz
system in secure communication.

Index Terms—Adaptive observer, chaotic synchronization, persistently
exciting.

I. INTRODUCTION

Chaotic synchronization has drawn much attention since the cele-
brated work [11] of Pecora and Carrol was published in 1990. It is moti-
vated not only by scientific interest, but also by potential applications of

Manuscript received March 12, 2007; revised July 5, 2007 and October 9,
2007. Current version published September 10, 2008. Recommended by Asso-
ciate Editor S. Celikovsky

The authors are with the Department of Electrical, Electronic and Computer
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
lxiyin@up.ac.za; jfzhang@tuks.co.za; xxia@postino.up.ac.za).

Digital Object Identifier 10.1109/TAC.2008.928318

0018-9286/$25.00 © 2008 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 7, AUGUST 2008 1741

chaotic synchronization in different fields, particularly in secure com-
munication. Several chaos-based communication methods have been
proposed, such as chaotic masking, chaotic modulation and chaos shift
keying (see [5], [6], and [7]). However, many proposed schemes have a
low degree of security ([12], [15], [18]). Some parameters of the chaotic
transmitter system are used as the password. From the viewpoint of
control theory, many robust and adaptive techniques can “decrypt” the
parameter. To solve this problem, [3] suggests a new class of chaotic
system, which is state equivalent to the generalized Lorenz system, first
introduced in [4] and [17], through a change of coordinates ([2]). It is
shown in [3] that a class of adaptive observers, which is widely used
before, cannot be used to estimate the unknown parameter. Based on
this fact, a conjecture is provided: generalized Lorenz system allows
secure synchronization.

In this paper, we aim at finding more properties of the transformed
generalized Lorenz system with an unknown parameter introduced in
[3], and thus showing that its states and unknown parameter can actu-
ally be estimated by constructing a different kind of adaptive observer.
In other words, we will use the kind of adaptive observer introduced
in [19] to achieve synchronization. Reference [19] shows that this kind
of observer is exponential if some function satisfies certain persistently
exciting (PE) condition. To apply this result for the transformed gener-
alized Lorenz system (8) in this paper, we first prove the output, which
is defined as its first sate variable �1(t), to be PE (see Lemma 4). Then
we further show that another function, �1(t) in (21), is also PE. It is
noted that such a proof for the PE property of the output �1(t) is still
lacking in literature although [3] mentions that it may hold due to the
transitivity property. In order to prove the PE property of �1(t), we
need to consider the dynamics of the transformed generalized Lorenz
system (8). By some analytic techniques, some general properties of
the trajectories of (8) are obtained. After the above preparation, an ex-
ponential observer is successfully constructed to estimate the states and
unknown parameter of the transformed generalized Lorenz system. The
numerical results also convince that the unknown parameter can be es-
timated exactly. Thus the unknown parameter � can not be a password,
and more efforts need to be done besides the designing of an unknown
parameter ([3]) in order to improve security. The idea in this paper is
applicable to some other smooth chaotic systems too ([9], [16]), that
is, if some PE property can be proved, then we can construct similarly
an adaptive observer to deal with the robust synchronization problem.

The layout of the paper is as follows. In Section II, we recall some
basics on the adaptive observer defined in [19]. In Section III, we
give some properties of the trajectories of the transformed generalized
Lorenz system. The adaptive observer for the transformed generalized
Lorenz system with unknown parameter is given in Section IV, and it
is shown to be an exponential observer by the results of Section III. An
example in Section V shows the efficiency of our proposed observer.
The last section is the conclusion.

II. SOME FACTS ABOUT ADAPTIVE OBSERVERS

Definition 1: ([14]) A vector function w : R! R2n is persistently
exciting (PE) if there exist �1, �2, T > 0 such that

�1I �
t+T

t

w(s)wT (s)ds � �2I; 8 t � 0: (1)

Consider the following system:

_x(t) = A(t)x(t) +B(t)u(t) + 	(t)�

y(t) = C(t)x(t)
(2)

where x(t) 2 Rn, y(t) 2 Rm, u(t) 2 Rl are the state, output, and
input vectors, respectively,A(t),B(t),C(t),	(t) are known matrices
of appropriate dimensions and continuous in time, and � 2 Rp is an
unknown constant vector. The following conditions were introduced in
[19] for (2).

Condition 1. There exists a bounded time-varying matrix K(t) 2
Rn � Rm so that the system _� (t) = [A(t) � K(t)C(t)]� (t) is
exponentially stable.
Condition 2. The solution �(t) 2 Rn � Rp of _�(t) = [A(t) �
K(t)C(t)]�(t) + 	(t) is persistently exciting in the sense that
there exist �1, �1, T1 > 0 such that

�1I �
t+T

t

�T (s)CT (s)�(s)C(s)�(s)ds� �1I

8t � t0

for some t0 � 0 and some bounded positively definite matrix
�(t) 2 Rm � Rm.

Reference [19] shows that if Conditions 1 and 2 hold, then the fol-
lowing adaptive observer is a global exponential observer for system
(2) [see (3), as shown at the bottom of the page], where � 2 Rp�Rp

is any symmetric positive definite matrix.
Reference [1] tells that the above result can be applied to a class of

nonlinear system

_x(t) = A(u(t); y(t))x(t) + '(u(t); y(t)) + �(u(t); y(t))�

y(t) = Cx(t)
(4)

where � is an unknown constant or slow time-varying vectors, and the
components ofA(u(t); y(t)); '(u(t); y(t)) and�(u(t); y(t)) are con-
tinuous functions depending on u and y, and uniformly bounded.

III. THE COMPLICATED BEHAVIOR OF THE

GENERALIZED LORENZ SYSTEMS

The following generalized Lorenz system is defined in [3]:

_x =
A 0

0 �3
x+

0

�x1x3

x1x2

; A =
a11 a12

a21 a22
(5)

where x = [ x1 x2 x3 ]
T , �3 2 R; and A has eigenvalues �1,

�2 2 R such that

��2 > �1 > ��3 > 0: (6)

_̂x = [A(t)�K(t)C(t)]x̂(t) +B(t)u(t) +K(t)y(t) + 	(t)�̂ +�(t)
_̂
�(t);

_̂
�(t) = ��T (t)CT (t)�(t)[y(t)� C(t)x̂(t)];
_�(t) = [A(t)�K(t)C(t)]�(t)+ 	(t)

(3)
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Moreover, the generalized Lorenz system is said to be nontrivial if it
has at least one solution that goes neither to zero nor to infinity nor to
a limit cycle.

Reference [2] shows that there exists a nonlinear change of coor-
dinates, z = Tx, which transforms (5) into the generalized Lorenz
canonical form

_z =

�1 0 0

0 �2 0

0 0 �3

z + cz

0 0 �1

0 0 �1

1 � 0

z (7)

where z = [ z1 z2 z3 ]
T , c = [ 1 �1 0 ] and the parameter � 2

(�1;1). System (7) is state equivalent to the following form (see [3]):

d�

dt
=

(�1 + �2)�1 + �2
��1�2�1 � (�1 � �2)�1�3 � 1

2
(� + 1)�31

�3�3 +K1(�)�
2
1

(8)

where � = [ �1 �2 �3 ]
T and K1(�) =

(�3(� + 1)� 2��1 � 2�2)=(2(�1 � �2)). The corre-
sponding coordinate change and its inverse are [3]

�T = z1 � z2 �1z2 � �2z1 z3 � (�+1)(z �z )
2(� �� )

(9)

zT = � � +�
� ��

� � +�
� ��

�3 +
(�+1)�

2(� �� )
: (10)

From the above transformations and (7) and (8), we have an equivalent
system

_�1 = �1�1 + (�1 � �2)z2;
_z2 = �2z2 � �1z3
_z3 = �3z3 + �21 + (1 + � )�1z2:

(11)

The following assumption is needed in later text.
Assumption 1: The states of system (8) and their time derivatives

are continuous and bounded.
Remark 1: The proofs of the boundness of Lorenz type systems are

reported in [8] and [20]. As for some specific type of chaotic systems,
the corresponding proof is given only for some special parameter region
([21]). Therefore, the above boundness hypotheses in Assumption 1 are
reasonable. It is also helpful to note that, under Assumption 1, �1(t) is
uniformly continuous by applying the Mean Value Theorem.

For the parameter � , [2] shows that we need to consider the re-
gion � < ��2=�1 since (6) must be met. Therefore, we assume � <
��2=�1 from now on.

System (11) has three equilibriaO0(0; 0; 0) and the equation shown
at the bottom of the page. Obviously,O0 is unstable. The characteristic
polynomial for O1;2 is

�3 � (�1 + �2 + �3)�
2 +

�3 �22 + ��21

�2 + �1�
�+ 2�1�2�3 = 0:

It is possible to make O1 and O2 both stable or unstable; for ex-
ample, they are stable when � < �0, while unstable when � > �0,
where �0 = ��22=�21(�1 + �2 + �3) + 2�1=(�1 + �2 + �3) + 2�1:
Therefore, the following assumption is made.

Assumption 2: System (8) has three unstable equilibria.
Suppose system (8) is chaotic, then it satisfies the following obvious

properties which will be used in the proofs of some lemmas:
• at least one solution of the system does not go to zero, or to infinity,

or to a limit cycle;
• for any finite T < 1, it is impossible that the derivatives of any

state variable of system (8) keeps its signs, i.e., neither _�i(t) > 0
for t � T nor _�i(t) < 0; i = 1; 2; 3 (see [20] and [21]);

• the states �i(t) do not always be zero on any interval (�; �), that
is, �i(t) 6� 0 on any (�; �), i = 1; 2; 3 ([20] and [21]).

Lemma 1: For system (8), there exists a time t1 such that �3(t1) >
0(< 0) for t � t1 if K1(�) > 0(< 0).

Proof: Conversely, for any t1 > 0, there exists t0 > t1 such
that �3(t0) < 0(> 0) and _�3(t

0) = 0 if K1(�) > 0(< 0). Now
�3�3(t

0) > 0(< 0) which contradicts with the fact that �3�3(t0) =
�K1(�)�

2
1(t

0) < 0(> 0). This ends the proof.
The following Lemma 2 follows in a similar way as Lemma 4 of [20]

or Lemma 1 of [21].
Lemma 2: Assume _�1(t) 6� 0 for t 2 (�1 +1). If there exists

� such that _�1(�) = ��1(�) = 0, then t = � is not an extreme value
point of �1(t).

Let

_F = �aF + aF 2 � be�dt; where a < 0; b > 0; d > 0 (12)

and the initial value F (0) 2 (1=2 1) and _F (0) < 0. Its solution is
([13])

F (t) = � e�1=2dt
p�ab
a

Jv+1(x) + C1Yv+1(x)

Jv(x) + C1Yv(x)

where v = � a

d
; x = 2

p�abe�1=2dt
d

: (13)

C1 is determined by F (0), Jv(x) and Yv(x) are the first and second
kind of Bessel function, respectively, and are defined by the formulas

Jv(x) = (
x

2
)v

1

k=0

(�1)k(x
2
)2k

k!�(v + k + 1)

Yv(x) =
Jv(x) cos�v � J�v(x)

sin�v
(14)

with �(x) being the Gamma function. The formula for Yv(x) is valid
for any non-integer v. For a nonnegative integer n

Yn(x) =
2

�
Jn(x) lg

x

2
� 1

�

n�1

k=0

(n� k � 1)!

k!

2

x

n�2k

� 1

�

1

k=0

(�1)k
2

x

n+2k
 (k + 1) +  (n+ k + 1)

k!(n+ k)!
(15)

where  (1) = �C;  (n) = �C + n�1
k=1 k

�1;�C is the Euler
constant.

Lemma 3: Suppose F (t) > 0 for t � 0 and b is bounded in (12),
then there exists t1 > 0 independent of b such that F (t1) = F (0).

Proof: It is easy to know that F (t) < 1 for all t > 0. In fact, let
t1 2 (0 +1) be the first point such that F (t1) = 1, then _F (t1) < 0.
This is impossible since F (0) < 1.

O1;2 � �1�2�3
(�2 + �1� )

;� �1
�1 � �2

�1�2�3
(�2 + �1� )

;
�1�2
�2 � �1
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Let x = 2
p�abe�1=2dt=d, then x tends to zero when t is suffi-

ciently large. Now Jv(x) tends to zero and J�v(x) tends to infinite
since v > 0. If v is not an integer

lim
t!1

F (t) = lim
t!1

�e�1=2dt
p�ab(x

2
)�(v+1)

a sin (�(v + 1))�(�v)
� sin (�v)�(�v+ 1)

(x
2
)�v

= lim
t!1

�e�1=2dt
p�ab
a

�a

d

� 2d

2
p�abe�1=2dt = 1:

Now the result follows from the fact that F (0) 2 (1=2 1). The case
that v is an integer follows from a similar proof.

Theorem 1: Suppose system (8) is chaotic, then there exists a finite
time �t so that �1(t) has at least one extremum in the interval (t0; t0+
�t) for any t0 � 0.

Proof: Conversely, for any increasing sequence f�tig11 with
limi!1�ti = +1, there exists a sequence ftig11 such that �1 has
no extreme on (ti; Ti), where Ti := ti+�ti. Note that �1(t) is mono-
tonic on [ti; Ti], then without loss of generality we can suppose ftig11
is increasing, limi!1 ti = +1, �1(ti) is a minimum, and �1(Ti) a
maximum. Since system (8) and system (11) are state equivalent, we
consider the latter for convenience. Now there are the following two
cases.

1) Case I: �1(ti)� �1(Ti) tends to zero when i! 1.
Since �1(ti)� �1(Ti) tends to zero when i ! 1, we can suppose

�1(Ti) � �1(ti) < �i, where �i is positive and tends to zero when
i ! 1. By Assumption 1 we know that _�1(t) < M1�i holds for all
t 2 (ti Ti), where M1 is a positive constant. Then jz2(Ti)�z2(ti)j <
M3�i by (11). Similarly, we have that both _z2(t) and _z3(t) tend to zero
for t 2 (ti Ti) when i tends to infinity. Thus, (�1(Ti); z2(Ti); z3(Ti))
tends to one of the three equilibria. In the following, we consider only
the case that (�1(Ti); z2(Ti); z3(Ti)) tends to O0. For the other cases,
it can be proved in a similar way after a coordinate change (�1; z2; z3)�
O1;2. Now we have the following three subcases.

I.I) If �1(Ti) = 0, then _�2(Ti) = 0. Hence ��1(Ti) = 0, and it
contradicts with Lemma 2 since �1(Ti) is a maximum.
I.II) If �1(Ti) > 0, then _�1(Ti) = 0 and ��1(Ti) =
(�1 � �2) _z2(Ti) < 0. Thus, _z2(Ti) < 0 for �1 � �2 > 0.
However, by (11) we know that z3(Ti) becomes suffi-
ciently small when �ti becomes sufficiently large, there-
fore z2(Ti) = ��1�1(Ti)=(�1 � �2) and _z2(Ti) =
�(z3 + �1�2=(�1 � �2))�1(Ti) > 0. This is a contradic-
tion.
I.III) If �1(Ti) < 0 and K1(� ) < 0, then it follows from
Lemma 1 that �3(ti) < 0 for sufficiently large i. By (8) we know
_�2(ti) < �1(��1�2 � (�1 � �2)�3 � 1=2(� + 1)�21) < 0.
However, ��1(ti) = _�2(ti) > 0 since �1(ti) is a minimum. It is a
contradiction.
I.IV) If �1(Ti) < 0 and K1(�) = 0, then limt!1 �3(t) = 0,
which is impossible since the system is chaotic.
I.V) If �1(Ti) < 0 and K1(�) > 0, it is obvious that �1(ti) < 0
and �3(ti) > 0. Let f = z2=�1, then

_f(t) = af(t) + af2(t)� z3(t); f(ti) =
�1

�2 � �1
(16)

where a = �2��1 < 0. It is easy to obtain z2(ti) > 0 and _z2(ti) > 0
since ��1(ti) > 0 and _�1(ti) = 0. Thus, _f(ti) < 0. If _�1(t) = 0 for
some point t, then f(t) = �1=(�2 � �1), that is, f(t) = f(ti). If we
can prove that there exists an integer N so that the function y = f(t)
travels through the line y = �1=(�2 � �1) in the t� y plane for every

Fig. 1. Illustration for � (t) and z (t) in Case II.

i > N when t 2 (ti Ti), then �1(t) reaches the maximum before
t = Ti. Now we prove this in the following.

Let f = �1 + F , then

_F (t) = �aF (t) + aF 2(t)� z3(t); F (ti) =
�2

�2 � �1
: (17)

From (8) and transformation (10), we know that z3(t) =
�3(ti)e

� (t�t ) + �(t) holds for t 2 (ti Ti); where

�(t) =
(� + 1)

2(�1 � �2)
�21(t) +K1(�)e

� (t�t )

�
t

t

e�� (s�t )�21(s)ds > 0:

We have the following equations for F (t) and another function F1(t)

_F = � aF (t) + aF 2(t)� �3(ti)e
� (t�t ) � �(t)

_F1 = � aF1(t) + aF 2
1 (t)� �3(ti)e

� (t�t ): (18)

Let the two equations have the same initial values, that is, F1(ti) =
F (ti) = �2=(�2 � �1), then it follows from _F (t) < _F1(t) that 0 <
F (t) < F1(t). By (18), we have

_F � _F1 � �a(F (t)� F1(t))� �(t): (19)

Thus 0 > F (t)� F1(t) > �e�a(t�t ) t

t
eas�(s)ds, for t 2 (ti Ti).

Then it follows from Lemma 3 that there exists a time ti1 2 (ti Ti)
independent of �3(ti) such that F1(ti1) = F1(ti). In a similar way,
we can prove that there exists a time ti3 2 (ti1 Ti) independent of
�3(ti) such that F (ti3) = 1=2 + F (ti)=2 2 (F (ti) 1). Since �(t) is
sufficiently small, there exists a time ti2 2 (ti1 ti3) such that F (ti2) =
F (ti), that is, there exists a time ti2 < Ti for every i > N such that
�1(ti2) reaches its maximum, where N is a sufficiently large number.
This contradicts the hypothesis that �1(t) is monotonic for t 2 (ti Ti).

By the above four subcases, we conclude that Case I does not happen.
Therefore, we consider the second case.

2) Case II: �1(ti)� �1(Ti) does not tend to zero when i!1.
Since �ti tends to infinity, we choose �ti � 22i. Let �1(tm1) =

1=2(�1(Ti) � �1(ti)), then either tm1 � ti or Ti � tm1 is greater
than 22i�1. Without loss of generality, let Ti � tm1 � 22i�1. Then
there exists a time tm2 2 (tm1 Ti) such that �1(tm2) = (�1(Ti) �
�1(tm1))=2. It is obvious that either tm2 � tm1 or Ti � tm2 is greater
than 22i�2. After repeating the above process for i times, we obtain
two times tmi and tMi such that �1(tMi)��1(tmi) < 1=2i(�1(Ti)�
�1(ti)) and tMi � tmi � 2i (see Fig. 1 for illustration.)

Following the same way in Case I, �1(tMi) and �1(tmi) tend to
one of the three equilibria. For the same reason as Case I, we only
consider the equilibrium O0. From subcase I.I) we know that �1(Ti) >
0. Thus we can suppose that��i = �1(tmi) < 0 < �1(tMi) = �i and
limi!1(tMi � tmi) = +1.

Since z2(Ti) < 0, there exists a time t02 such that z2(t02) reaches
0 for the first time. Firstly we prove that z2(t) is decreasing on
(tmi; min(tMi; t02)). Since �1(t) < �i for t 2 (tmi tMi), we can as-
sume, without loss of generality, that j�3(tmi)j < ��1�2=(�1 � �2).
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Let t01 be the time at which �1(t01) = 0. Then by _�1(t01) > 0
we have �2(t01) > 0. It follows obviously from (8) that _�2(t) < 0
on (tmi t01) and _�2(t) > 0 on (t01 tMi). Now by (10) we know
that _z2 = (�2 _�1 + _�2)=(�1 � �2) < 0 for t 2 (tmi; t01), and
_z2 < �2(�2�1 + �2)=(�1 � �2) < 0 for t 2 (t01;min(tMi; t02)) for
z2(t) = (�2�1 + �2)=(�1 � �2) > 0.

Since z2(Ti) < 0, there exists a time te so that �1(te) is positive
and reaches z2(te) for the first time. Let � = �1(te), then we claim
that te must be less than tMi. In fact, if z2(t) > �i on (tmi tMi), then
_�1(t) = �1�1 + (�1 � �2)z2 > ��2�i, thus �1(tMi) > �i which
contradicts �1(tMi) = �i.

Let g = �1=z2, after a simple computation we have the following
formula from (11) for t 2 (tmi t01)

_g = �a� ag + g2z3; g(t01) = 0: (20)

If t01 � tmi tends to infinity with i, then z3((t01 + tmi)=2)
and �3((t01 + tmi)=2) are sufficiently small on (tmi t01). Since
g(t) < 0 for t 2 (tmi t01) and g(t01) = 0, there exists a time
tm0 2 ((t01 + tmi)=2 t01) such that g(tm0) = �1=2, that is,
�1(tm0)=z2(tm0) = �1=2. Hence, by (11), _�1(tm0) = (2�2��1)�1
and _z2(tm0) = (2�2 � z3)�1. By coordinate change (10), we know
_�2(tm0) = (�4�22 + 3�1�2 � z3(�1 � �2))�1 > 0;; however, (8)
gives _�2(tm0) = (��1�2 � (�1 � �2)�3 � 1=2(1 + � )�21)�1 < 0;
which is a contradiction. Hence ft01� tmi : i = 1; 2; . . .g is bounded.

Since t01 � tmi is a finite time independent of i and tMi � tmi

tends to infinity, tMi � t01 tends to infinity too. By the same
reason that we assume j�3(tmi)j is bounded, we can also as-
sume jz3(tmi)j < �2�1�2=(�1 � �2). From (16) we know
that f(t) becomes small enough after a long time. Hence,
_�1(t) > 2�1=�1(t) for t 2 ((tmi + tMi)=2; tMi). Then it fol-
lows from _�1(tmi) > 0 that z2(tmi) > �1�i=(�1 � �2). Now we
can obtain j�1(t)j < (�1 � �2)z2=�1 for t 2 (tmi; t01) because
_�1(t) = �1�1(t) + (�1 � �2)z2(t) > 0. From (11), we know that

_z2(t) =�2z2(t)� �1(t)z3(t) > �2z2(t) +
�2
2
z2(t)

=
3

2
�2z2(t):

Thus, z2(t01) > exp(3=2�2(t01 � tmi))z2(tmi). Similarly we
have � = z2(te) > e3=2� (t �t )z2(t01) � �M; where M is
a positive constant. Then � > 1=1 + Me3=2� (t �t )z2(t01)>
1=1 + M�1=�1 � �2e

3=2� (t �t )z2(t01)�i: Since _�1 > �1=2�1,
we have �1(tMi) > e� =2(t �t )=2�1(tmi+(tMi � tmi)=2) >
e� (t �t )=4� > �i; which contradicts �1(tMi) = �i.

IV. ADAPTIVE SYNCHRONIZATION WITH PE CONDITION

Consider system (8) with the output y = �1(t), its state cannot be
estimated by a class of adaptive observers if the parameter � is unknown
[3]. By (3) and (4), we construct the following adaptive observer for
system (8):

d�̂

dt
=

l1 1 0

 l2 0 (�2 � �1)�1
0 0 �3

�̂ +

�1 + �2 � l1
��1�2 � l2

0

�1

+

0

� 1
2
�31

� �2�
2(� �� )

�21

+

0

� 1
2
�31

� �2�
2(� �� )

�21

�̂ + �(t) _̂�

_̂� (t) = �T (t)CT (t)[�1(t)� C(t)�̂(t)]

_�(t) =

l1 1 0

 l2 0 (�2 � �1)�1
0 0 �3

�(t) +

0

� 1
2
�31

� �2�
2(� �� )

�21
(21)

where li < 0, i = 1; 2. The synchronization between (8) and (21)
is achieved if limt!1 j�(t) � �̂(t)j = 0, that is, the above observer
is an asymptotically stable observer for system (8). As mentioned in
Section II, the observer is asymptotically stable under Condition 1 and
2. Condition 1 is proved in [3]. The difficulty is to prove that Condition
2 holds, that is �1(t) is PE. In order to prove Condition 2, we need
some properties of �1(t) and PE conditions.

Lemma 4: Suppose that system (8) is nontrivial and there exists a
finite time �t so that �1(t) has at least one extremum in the interval
(t0; t0 + �t) for any t0 � 0, then �1(t) is PE.

Proof: For any t0 > 0, if there exist a positive constant � > 0, a
finite time �t0, and a time t0 in [t0; t0 + �t0] such that j�1(t0)j > �,
and � and �t0 are independent of time t0, then there exists � > 0
independent of time t0 such that j�1(t)j � �=2 for all t 2 [t0� �; t0+
�] � [t0; t0 + �t] since the derivation of �1(t) is bounded according
to Assumption 1. Hence the PE condition (1) is satisfied. If the above
� and �t0 do not exist, then for any positive integer i and M=2i, and
any increasing sequence f�tig with �t1 > 4�t and limi!1 �ti =
+1, there exists a sequence ftig such that j�1(t)j < M=2i on [ti; Ti]
for all i, where M := supt�0 j�1(t)j and Ti := ti + �ti . Note that
�ti=2 > 2�t and �1 has at least one extremum in the interval (t0; t0+
�t) for any t0 � 0, there exists a t0 2 [ti + �ti=2; Ti] such that
�1(t0) is a maximum, therefore we have ��1(t0) = (�1 + �2) _�1(t0) +
_�2(t0) = _�2(t0) < 0. Note also that j�1j < M=2i on [ti; Ti] and
_�3 = �3�3 +K1(�)�21 , therefore, when �ti is sufficiently large, �3(t)
will become sufficiently small such that ��1�2 � (�1 � �2)�3(t)�
1=2(1 + � )�21(t) > 0 for all t 2 [ti + �ti=2; Ti]. If �1(t0) � 0,
then by (8) we have _�2(t0) � 0, which contradicts the previously got
_�2(t0) < 0. In case of �1(t0) < 0, it follows from �ti=2 > 2�t
that there must exists a t00 2 [ti + �ti=2; t0) or (t0; Ti] such that
t00 is the nearest minimum point to t0. A similar proof leads also to a
contradiction.

Lemma 5: ([10], [14]) Let a > 0, and the input u(t) be PE in the
1-D system _x = �ax + u(t), then the solution x(t) is also PE.

Lemma 6: Let x(t) be a scalar function of time, and suppose x(t)
and _x(t) are continuous and bounded, then x2(t) is PE if x(t) is PE.

Proof: Since x(t) is PE, there exist �1, �2, T > 0 such that
�1I �

t +T

t
x2(s)ds � �2I; for all t1 � 0. Then there exists a time

t2 2 (t1; t1 + T ) such that x2(t2) � �1=T . Since _x is bounded, we
have jx(t0)� x(t00)j = j _x(�)jjt0 � t00j � M jt0 � t00j, where M > 0
and � 2 (t0; t00). Thus there exists � > 0 independent of time t1 such
that x2(t) � �1=2T for all t 2 [t2� �; t2 + �]. Then it is obvious that

t +T

t

x4ds �
t +�

t ��

x4ds � 2�
�1

2T

2

:

Now, we rewrite �(t) in the following form:

_�(t) =

l1 1 0

 l2 0 0

0 0 �3

�(t) +

0

(�2 � �1)y�3 �
1
2
y3

� �2�
2(� �� )

y2
(22)

where y(t) is the output of system (8), that is, �1(t). Apply the fol-
lowing transformation to (22):

� =

1 1 0

�a2 �a1 0

0 0 1

� = P�

a1 + a2 = l1; �a1a2 = l2 (23)

then

_� =

a1 0 0

0 a2 0

0 0 �3

� +

(�2 � �1)y�3 �
1
2
y3

�a1 (�2 � �1)y�3 �
1
2
y3

� �2�
2(� �� )

y2
: (24)
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Remark 2: From Lemma 5, it is easy to know that �3(t) or �3(t) is
PE since Lemma 4 has already proved that �1(t) is PE.

Note that we can make a1, a2 < 0 by choosing properly l1 and l2
in (23), therefore it is assumed from now on that a1 < 0 and a2 < 0.

Lemma 7: There exist �1, �2, �t > 0 such that

�1I �
t+�t

t

�2
3(s)ds � �2I; 8 t � 0

and there is at least one local maximum of �3 in [t; t+�t].
Proof: Since�3(t) is PE, we can always find appropriate �1, �2,

�t > 0 such that

�1I �
t+�t

t

�2
3(s)ds � �2I; 8 t � 0:

Now we prove the lemma by contradiction. If the result does not hold,
then by following the same way as in Theorem 1, there exist two in-
creasing sequences ftig11 and fTig

1

1 such that ti and�ti = Ti�ti >
0 tend to infinity, and �3(t) is monotonic on [ti; ti + Ti]. For the
same reason in case II of Theorem 1, we can assume similarly that
j�(Ti)��(ti)j < �i where �i is a sufficiently small positive number
when i is sufficiently large. It follows from (22) and Assumption 1 that
�3(t) and _�3(t) are bounded, therefore j _�3(t)j < M�i on (ti; Ti),
where M is a positive constant. However, by Theorem 1 there exist
ti < t0; t00 < Ti such that y2(t00) � y2(t0) = �, where � is a posi-
tive constant. Let b = (�3 � 2�1)=2(�1 � �2) < 0, then j _�3(t

00)j =
j�3�(t

00) + by2(t00)j = j _�3(t
0) + �3(�(t

00)��(t0)) + b(y2(t00)�
y2(t0))j > jb�j � (M � �3)�i > M�i when �i is sufficiently small.
This contradiction ends the proof.

Lemma 8: Let a = (�2��1) < 0, then f(t) = ay�3(t)�1=2y
3(t)

is PE.
Proof: Let b = �3 � 2�1=2(�1 � �2) < 0, then from _�3(t) =

�3�3(t) + by2(t) we obtain

f(t) =
a

�3
y _�3(t)�

2ab+ �3
2�3

y3 =
a

�3
y _�3(t)�

�1
�3

y3

and �3(t) < 0 from Lemma 1. From Lemma 7, there exists t1 2
(t; t + �t) such that _�3(t1) = 0 and

y2(t1) =
1

b
( _�3(t1)� �3�3(t1)) �

�3
b

�1
�t

where �t and �1 are defined in Lemma 7. Since y(t) and
_�3(t) are uniformly continuous, there exists � > 0 indepen-

dent of time t such that ja _�3(t)j < �1�3 �1=�t=(4b) and
�1y

2(t) > �1�3 �1=�t=(2b) for t 2 [t1 � �; t1 + �].
Therefore jf(t)j = jy(a _�3(t) � �1y

2(t))=�3j > " for all
t 2 [t1 � �; t1 + �] � [t; t + �t]; where " is a positive con-
stant. Hence

t+�t

t

f2(s)ds >
t +�

t ��

f2(s)ds > 2"�:

Theorem 2: Under Assumption 1 and Assumption 2, observer (21)
is an exponential observer for system (8) under the output y = �1(t).

Proof: By the transformation (23) we have �1(t) = (a1�1 +
�2)=(a1 � a2) and ai < 0, i = 1; 2, thus

_�1 =
(a1(a1�1 + f) + (a2�2 � a1f))

a1 � a2
= a1�1 � �2: (25)

By Lemma 8, we know that f(t) = (�2 � �1)y�3 � 1=2y3 is PE,
then from Lemma 5 and (24) we have �2(t) is PE. Similarly �1(t) is
also PE. As mentioned above, Condition 1 is proven in [3]. Condition
2 holds from the fact that �1(t) is PE. From Theorem 1 in [19], we
know that observer (21) is an exponential observer for system (8).

Fig. 2. Synchronization errors between (8) and (21).

Fig. 3. Parameter estimation value.

Remark 3: For system (8) with output �1(t), the authors of [3]
proved that it cannot achieve synchronization by certain kind of ob-
server, owing to the unknown parameter � . Now, without additional
conditions, we prove that observer (21) can estimate the states and the
unknown parameter at the same time.

V. NUMERICAL ILLUSTRATION

In [3], the authors illustrated that system (8) cannot be synchronized
without knowing the exact � with the parameters �1 = 8, �2 =
�16, �3 = �1 and � = 0:5. Now, selecting l1 = �28, l2 =
180, we show the efficiency of the observer (21) with the same pa-
rameters. First, we compute the three equilibria and the eigenvalues
of the corresponding Jacobian matrices. Obviously, O0(0; 0; 0) is un-
stable since �1 > 0. After a simple computation, the other equilib-
riums are O1(3:266; 26:128;5) and O2(�3:266;26:128;5) respec-
tively. The Jacobian matrices corresponding to O1 and O2 have the
eigenvalue 15.434 and �12:217� 10:385i. Fig. 2 shows the synchro-
nization errors between system (8) and (21). Fig. 3 shows that the un-
known parameter � is estimated exactly, which implies the parameter
� can not be a password. The initial values of system (8) and (21) are
[1 2 3] and [2 3 4 3 2 � 1 2] respectively. The two figures show that
both the state and the unknown parameter of (8) can be estimated.

VI. CONCLUSION

In this paper, we achieve synchronization for a class of chaotic
system with unknown parameter, whose parameter is believed to be
difficult to estimate. The key idea is to use a different kind of adaptive
observer from literature to the transformed generalized Lorenz system.
Such an idea and the kind of observer we used in this paper will
be further applied in the synchronization problem of other chaotic
systems.
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Receding Horizon Controls for Input-Delayed Systems

Jung Hun Park, Han Woong Yoo, Soohee Han, and
Wook Hyun Kwon, Fellow, IEEE

Abstract—This paper presents a receding horizon control (RHC) for
an unconstrained input-delayed system. To begin with, we derive a finite
horizon optimal control for a quadratic cost function including two final
weighting terms. The RHC is easily obtained by changing the initial
and final times of the finite horizon optimal control. A linear matrix
inequality (LMI) condition on two final weighting matrices is proposed to
meet the cost monotonicity, under which the optimal cost on the horizon
is monotonically nonincreasing with time and hence the asymptotical
stability is guaranteed only if an observability condition is met. It is shown
through simulation that the proposed RHC stabilizes the input-delayed
system effectively and its performance can be tuned by adjusting weighting
matrices with respect to the state and the input.

Index Terms—Cost monotonicity, final weighting matrix, input delay,
quadratic cost function, receding horizon control (RHC).

I. INTRODUCTION

In many industrial and natural dynamic processes, time delays on
states and/or control inputs are frequently encountered in the transmis-
sion of information or material between different parts of a system. The
representative examples of time-delay systems are chemical systems,
transportation systems, communication systems, and biological sys-
tems. As one of time-delay systems, an input-delayed system is easily
found and preferred for easy modelling. Much research on input-de-
layed systems has been made for decades in order to compensate for
the deterioration of the performance due to the presence of input delay
[1]–[5].

For ordinary systems without time delay, predictive controls have
received much attention as a powerful tool for the control of industrial
process systems. One of predictive controls, called receding horizon
control (RHC), moving horizon control, or model predictive control
(MPC), has been widely investigated as a successful closed-loop con-
trol strategy for industrial fields such as chemical process controls in
petrochemical, pulp, and paper industries. The basic concept of the
RHC is to solve an optimization problem on the finite future horizon
at the current time and implement only the first solution as a current
control. This procedure then repeats at the next time. Since the RHC is
based on the cost function on the finite future horizon, it presents many
advantages such as a simple computation mechanism, good tracking
performance, input/state constraint handling, time-varying and non-
linear system handling, and so on, compared with other popular steady-
state infinite horizon controls [6]–[9].

For time-delay systems, there are only a few results for the RHC
in [10]–[13]. A simple receding horizon control with a special cost
function was proposed for state-delayed systems by using a reduction
method [10]. The general cost-based RHC for state-delayed systems
was introduced in [11]. Recently, the constrained MPC for uncertain
state-delayed systems and the receding horizon H1 control for state-
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