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Abstract: The Delta-modulated feedback control of a linear system introduces nonlinearity into the system through
switchings between two input values. It has been found that Delta-modulation gives rise to periodic orbits. The existence
of periodic points of all orders of Sigma-Delta modulation with “leaky” integration is completely characterized by some
interesting groups of polynomials with “sign” coefficients. The results are naturally generalized to Sigma-Delta modulations
with multiple delays, Delta-modulations in the “downlink”, unbalanced Delta-modulations and systems with two-level
quantized feedback. Further extensions relate to the existence of periodic points arising from Delta-modulated feedback
control of a stable linear system in an arbitrary direction, for which some necessary and sufficient conditions are given.
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1 Introduction

The determination of self-excited oscillations or limit cy-
cles first studied by Poincaré and Lyapunov is an old but
difficult problem in the classic qualitative theory of dynam-
ical systems [1]. For discrete-time systems, the problem has
been tackled from different points of view, ranging from
counting the number of types of periodic orbits [2], to the
arithmetic of the number of periodic points [3], to the ex-
istence [4] and calculation [5] of the periodic points. Hy-
brid systems resulting from the switching of controllers con-
stitute a special class of nonlinear dynamical systems [6].
Although stability properties around a specific limit cycle
(periodic orbits) have been discussed [7], there are very
few results on the existence and characterization of peri-
odic points induced by switchings. Worth mentioning is [8],
where the existence of a globally attractive periodic be-
haviour is proved for some switched flow networks.

This paper reports our recent studies on the periodic
orbits arising from a typical switching system — a Δ-
modulated control system:

x+ = Ax + bu, (1)

u = sgn (cTx), (2)

where x ∈ R
n is the state, x+ denotes the system state at

the next discrete time step, u ∈ R is the scalar input, A is
an n × n matrix of real numbers, b is a column vector of
n real numbers, and c ∈ R

n\{0} is called the modulation

direction. As usual, the function sgn (x) is defined as

sgn (x) =

{
1, when x � 0,

−1, when x < 0.

The term Sigma-Delta (ΣΔ) modulation comes from
analog-digital electronics [9, 10]. Δ-modulated feedback
has been applied to, for example, transmitting power reg-
ulation of a mobile unit in the Direct Sequence Code Divi-
sion Multiple Access (DS-CDMA) cellular network [11].
An advantage of such a control method is that only one
bit of datum is necessary for implementing the controller.
This is the standard in IS-95 [12] for transmitting power
control. Δ-modulated control is bounded, bang-bang, and
also a special kind of quantized control, which are topics of
longstanding interest in the control community [13∼16]. Δ-
modulated feedback is a switching between two values, typ-
ically +1 and −1. The resulting switching system is a spe-
cial kind of piecewise-linear system [6,17,18]. Discretizing
the equivalent-control-based sliding-mode controllers also
results in Δ-modulated type of feedback [19∼21].

Notably, periodic points have been found in all the afore-
mentioned situations (see also [22∼24]). Results are partial
and methods are not systematic, however.

In our recent works [25∼31], we have made efforts to find
complete solutions in some of the simple yet long-standing
cases, as well as unified methodologies in some general
cases; in particular, a complete characterization of the scalar
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setting with n = 1 in (1), which is the Sigma-Delta modu-
lation. Some necessary and sufficient conditions have been
obtained for stable system (1) in an arbitrary modulation di-
mension.

We now briefly describe some generalizations of the sys-
tems and results. Because of space limitation, only essential
results with brief proofs are given in this paper.

2 Scalar case: Sigma-Delta modulation

In the scalar case, we can limit our consideration to the
following system [29, 30]:

x+ = ax − sgn (ax). (3)

When a > 0, we call this system Type-I, and when a < 0,
Type-II. Here, it should be noted that the case of x+ =
ax + sgn (ax) leads to divergence when |a| > 1.

An orbit (xi) is periodic with period p � 0 if, for all i,

xi+p = xi.

A period p of an orbit (xi) is prime if it is the smallest of
such a period, and in this case, we say that the orbit (xi) is
p-periodic.

The following results are straightforward.
Theorem 1 1) When −1 < a < 1, the only global at-

tractor is the following set of two points:

{−1/(1 + |a|), 1/(1 + |a|)}. (4)

When 0 � a < 1, the two points in (4) are 2-periodic; when
−1 � a < 0, the two points in (4) are (1-periodic) fixed
points.

2) When a = 1, any point in the half-open interval
(−1, 1] is a 2-periodic point. When a = −1, all points but
±1/2 in the closed interval (−1, 1] are 2-periodic; ±1/2 are
fixed points.

3) When a � −2, (3) has n-periodic points for all n � 1;
when a � 2, (3) has n-periodic points for all n � 1.

The last conclusion also follows from the next result,
which is preceded by some definitions.

For a given positive integer k � 2, by an ordered set of
k “sign” parameters, we mean the set {θ0, θ1, · · · , θk−1},
in which θi ∈ {−1, 1}, i = 0, 1, · · · , k − 1. An ordered
set of polynomials with “sign” coefficients P{θ0,θ1,··· ,θk−1}
corresponding to a given ordered set of “sign” parameters
{θ0, θ1, · · · , θk−1} is defined as follows:{

Pi(a) =
k−1∑
j=0

θi+ja
k−j−1, 0 � i � k − 1

}
, (5)

where θi+j = θ(i+j)mod (k).
The ordered set of “sign” parameters {θ0, θ1, · · · , θk−1}

is called (strictly) shift-definite at a if

θiPi(a) � (>) 0,

for all Pi(a) ∈ P{θ0,θ1,··· ,θk−1}, i = 0, 1, · · · , k−1. Define

a function of a on (1,∞) by

P {θ0,··· ,θk−1}(a)=min
{
θiPi(a)|Pi ∈ P{θ0,··· ,θk−1}

}
, (6)

and call it the minimal value function w.r.t. {θ0, θ1, · · · ,
θk−1}. If there is a Pi(a) ∈ P{θ0,θ1,··· ,θk−1} such that

P {θ0,θ1,··· ,θk−1}(a) = θiPi(a),

and for all j �= i, Pj(a) ∈ P{θ0,θ1,··· ,θk−1},

P {θ0,θ1,··· ,θk−1}(a) < θjPj(a),

then the minimal value function is said to be strictly mini-
mal at a.

The following results are for Type-I systems.
Theorem 2 i) A point x0 ∈ R is a periodic point with

period n if and only if there is a set of n “sign” parame-
ters, {θ0, θ1, · · · , θn−1}, θi ∈ {−1, 1}, i = 0, 1, · · · , n−1,
which is shift-definite, such that

x0 =
1

an − 1

n−1∑
i=0

an−i−1θi. (7)

ii) A point x0 ∈ R is an n-periodic point (with prime pe-
riod n) if and only if n is the smallest positive integer such
that i) holds.

iii) If the minimal value function w.r.t. a shift-definite set
of “sign” parameters {θ0, θ1, · · · , θn−1} is strictly minimal
at a, then the periodic point given by (7) has a prime period
n.

To characterize when periodic points of a certain order
exist, we make use of three groups of polynomials whose
definitions and properties are summarized in the following
three lemmas.

Lemma 1 Consider the system of polynomials defined
by P 2(a) = a − 1, and for positive integers m � 1,

P 2m+1(a) = (a2m − 1)P 2m(a). (8)

These polynomials have the following properties:
i) For m � 1, P 2m+1(a) = (a − 1)P 2m(a2).
ii) For every m � 1, use {θ′

0, θ
′
1, · · · , θ

′
2m−1} to denote

the ordered set of parameters of the polynomials P 2m(a),
corresponding to the coefficients in decreasing order of
powers. This ordered set of parameters are shift-definite at
any a ∈ [1,∞). The polynomial P 2m(a) itself is the min-
imal value function on the interval (1,∞), and it is strictly
minimal at all a ∈ (1,∞).

Lemma 2 Consider the system of polynomials defined
by Q3(a) = a2 − a − 1, and for k > 1,

Q2k+3(a) = a2Q2k+1(a) + a − 1 (9)

and

Q(2k+1)2m(a) = Q2k+1(a
2m

)P 2m(a).

These polynomials have the following properties:
i) Q(2k+1)2m+1(a) = (a − 1)Q(2k+1)2m(a2), and it has

a unique root a(2k+1)2m in the interval (1,∞);
ii)

√
2 < a2k+3 < a2k+1;
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iii) lim
k→+∞

a2k+1 =
√

2;

iv) a(2k+1)2m = (a2k+1)1/2m

;
v) Q(2k+1)2n(a) is the strictly minimal value function,

w.r.t. the ordered set of parameters consisting of coefficients
of Q(2k+1)2n(a), in decreasing order of powers. When a �
a(2k+1)2n , this ordered set of parameters is shift-definite.

Lemma 3 Consider the system of polynomials defined
by H2(a) = P 2(a), and for k � 1,

H2k+2(a) = a2H2k(a) − H2(a). (10)

These polynomials have the following properties:
i) For all k > 1, H2k(a) = aQ2k−1(a) + 1.
ii) For every k > 2, the polynomial H2k(a) has a unique

real root in the interval (1,∞).
iii) The sequence of real roots of polynomials H2k(a)

in the interval (1,∞), denoted by ā2k, is strictly monoton-
ically increasing when k � 3. In particular, ā6 = a6, and
lim

k→+∞
ā2k =

√
2.

We sketch the proofs for parts ii) and iii) of Lemma 2.
From the definition of Q2k+3(a), we calculate the fol-

lowing:

Q2k+3(a) =
a2k+3 − 2a2k−1 − 1

a + 1
.

We need only to prove that the polynomial defined by
Q̄2k+3(a) = a2k+3 − 2a2k+1 − 1 has a unique root in
(1,∞). Since

dQ̄2k+3(a)
da

= a2k((2k + 3)a2 − 2(2k + 1)),

we see that
dQ̄2k+3(a)

da
is zero in (1,∞) only when a =

a∗ =

√
2(2k + 1)
2k + 3

, and

⎧⎨
⎩

dQ̄2k+3(a)
da < 0, when 1 � a < a∗,

dQ̄2k+3(a)
da > 0, when a > a∗.

Therefore, we have, for a ∈ (1, a∗], Q̄2k+3(a) <

Q̄2k+3(1) = −2. Q̄2k+3(a) is strictly monotonically in-
creasing in the interval [a∗,∞). Since Q̄2k+3(2) = 3 ×
22k+1 − 1 > 0, we know that Q̄2k+3(a) has a unique root
in (a∗,∞).

From the above, we see that Q̄2k+3(
√

2) = −1, so we
conclude that a2k+3 >

√
2. To prove a2k+3 < a2k+1,

we note that Q2k+3(a) = a2Q2k+1(a) + a − 1, so that
Q2k+3(a2k+1) = a2k+1 − 1 > 0, therefore, a2k+3 <

a2k+1.
The conclusion of part ii) in Lemma 2 guarantees the ex-

istence of a limit of the sequence {a2k+1}, denoted by a∞,
when k tends to infinity, and a∞ �

√
2. Note that a2k+1 is

also the unique root of Q̄2k+1(a); therefore, we have

a2k+1
2k+1 − 2a2k−1

2k+1 − 1 = 0,

a2
∞ − 2 − lim

k→∞
1

a2k−1
2k+1

= 0.

Since a∞ �
√

2, the third term on the left-hand side of the
last equation is zero; thus, we have a2

∞ − 2 = 0, that is,
a∞ =

√
2.

We are now ready to present our results for three dis-
tinct cases: 2m-periodic points, odd-order periodic points,
and even-order periodic points.

Theorem 3 i) If a > 1, then there exists a 2m-periodic
point in [−1, 1] for all m > 0.

ii) For every positive integer k � 1, system (3) has a
(2k + 1)-periodic point if and only if a � a2k+1.

iii) System (3) has a periodic point of a prime period
2nk, where k � 3 is odd, if and only if a � a2nk.

Proof We prove i) for illustration. From part ii) in
Lemma 1 and part i) in Theorem 2, the point defined by

x2m =
1

a2m − 1
P 2m(a),

with m � 1, is a periodic point in [−1, 1] with prime period
2m. Part ii) in Lemma 1 and part iii) in Theorem 2 together
imply that x2m is a 2m-periodic point.

Properties of polynomials of Q and H are used in the
proof of ii) and iii). Results for Type-II systems are simi-
larly obtained.

3 Sigma-Delta modulation with multiple de-

lays

The first extension to the higher-dimensional case is the
Sigma-Delta modulation with multiple delays [25]:

xn+k = axk + u, a �= 0, (11)

where x and u are both real, and

u = −sgn (axk). (12)

In the state-space form (1), this corresponds to a control-
lable canonical form, in which

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

a 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, a �= 0. (13)

When a > 0, system (13) is classified to be of Type-I, and
when a < 0, Type-II. We present results only for |a| < 1.

Define the following set of 2n points:

Ωca =
{

1
1 + |a|θ, θ = (θ1, θ2, · · · , θn)T,

θi ∈ {−1, 1}, i = 1, 2, · · · , n} .
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Theorem 4 Any x ∈ Ωca is a periodic point of the
closed-loop system (11) under control of the Δ-modulated
feedback (12). For Type-I systems, a positive integer l is a
period for some x ∈ Ωca if and only if l is not a divisor of n,
but is a divisor of 2n. For Type-II systems, a positive integer
l is a period for some x ∈ Ωca if and only if l is a divisor of
n.

Proof For any x =
1

1 + |a|θ ∈ Ωca, denoting x(1) =

f(x), one can verify that, for Type-I systems, x(n) = −x

and x(2n) = x. Therefore, every point in Ωca is a periodic
point of f , and a positive integer l is the period of a point of
Ωca only if it is a divisor of 2n but not a divisor of n.

On the other hand, if a positive integer l is a divisor of
2n, but not a divisor of n, then, according to the integer di-
vision algorithm, there exists a non-negative integer α and
a positive integer β, strictly less than l, such that

n = αl + β. (14)

From the above expression for n, it follows that l divides
2n implies l divides 2β, that is, 2β = k l for some positive
integer k. Because 0 < β < l, it follows necessarily that
k = 1, and therefore l = 2β. From (14), we have

n = (2α + 1)
l

2
= (2α + 1)β.

Construct the following vector of n numbers:⎛
⎜⎝

2α+1︷ ︸︸ ︷
1, · · ·, 1︸ ︷︷ ︸

β

,−1, · · ·,−1︸ ︷︷ ︸
β

, · · ·, 1, · · ·, 1︸ ︷︷ ︸
β

,−1, · · ·,−1︸ ︷︷ ︸
β

, 1, · · ·, 1︸ ︷︷ ︸
β

⎞
⎟⎠
T

.

It is easily seen that the vector obtained via multiplying this

vector by
1

1 + a
belongs to Ωca and has period l.

Similar arguments apply to Type-II systems. Therefore,
we have the following characterization of all possible peri-
ods.

Theorem 5 When n > 1, denote n =
q∏

i=1

pni
i , where

ni > 0, and let pi, i = 1, 2, · · · , q, be different prime fac-
tors of n in increasing order. Then, the following conclu-
sions hold:

i) When n = 1, Ωca consists of only one forward-orbit of
period 2 for systems of Type-I, and two equilibria for sys-
tems of Type-II.

ii) When n > 1, for systems of Type-II, a positive integer
l is the period of a point x ∈ Ωca if and only if it takes the
form

l =
q∏

i=1

pdi
i , 0 � di � ni, i = 1, 2, · · · , q. (15)

There are two periodic-1 (fixed) points in Ωca.
For any l �= 1 of the form (15), let pm, 1 � m � q, be

the smallest prime factor of l, i.e., d1 = · · · = dm−1 = 0,

dm �= 0. Denote l̄ =
l

pm
. Then, the number of distinct pe-

riodic orbits in Ωca with period l equals 2l − 2l̄.
iii) For systems of Type-I, factorize n into the following

form, for i = 1, · · · , q,

n = 2n0
q∏

i=1

pni
i , pi �= 2, n0 � 0, ni > 0. (16)

Then, a positive integer l is the period of a point x ∈ Ωca if
and only if it takes the following form, for i = 1, · · · , q,

l = 2n0+1
q∏

i=1

pdi
i , 0 � di � ni. (17)

There is one periodic-2 orbit in Ωca.
For any l �= 2 of the form (17), let pm, 1 � m � q,

be the second smallest prime factor of l, i.e., d1 = · · · =

dm−1 = 0, dm �= 0. Denote l̄ =
l

pm
. Then, the number of

distinct periodic orbits in Ωca with period l equals 2l − 2l̄.

4 Modulation along arbitrary direction of

stable systems

In this section, we assume that A is a stable matrix, i.e.,
the eigenvalues of A lie inside the unit circle.

The following result concerning periodic orbits generated
by external periodic excitation is well-known.

Theorem 6 i) For a periodic input sequence of period
L, there is a periodic orbit of period L for system (1).

ii) This periodic orbit is globally attracting.

Now, we turn to the situation of Δ-modulated control of
system (1). In this case, the controller u is a Δ-modulated
feedback defined by

u = sgn (cTx), (18)

in which c ∈ R
n\{0} is an arbitrary, but fixed, modulation

direction.
Suppose {x0, x1, · · · , } is an orbit of the closed-loop sys-

tem (1) and (18) starting from x0. The sequence defined by
{s0, s1, · · · , }, where si = sgn (cTxi), for i = 0, 1, · · · , is
a binary sequence of 1’s and −1’s. We will call it a mod-
ulated orbit of the closed-loop system (1) and (18) corre-
sponding to the orbit {x0, x1, · · · }.

Obviously, the modulated orbit of a periodic orbit of the
closed-loop system (1) and (18) is periodic. Therefore, to
determine the periodicity of an orbit of a Δ-modulated sys-
tem, from Theorem 6, it is decisive to see whether the Δ-
modulation in (18) introduces a periodic binary sequence.
This is addressed by the following theorem [31].

Theorem 7 The Δ-modulated system (1) and (18)
has a periodic orbit of period L if and only if there are
σ0, σ1, · · · , σL−1 ∈ {−1, 1} such that, for σi = 1,

cT(I − AL)−1
L−1∑
j=0

AL−j−1b σi+j � 0, (19)
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and for σi = −1,

cT(I − AL)−1
L−1∑
j=0

AL−j−1b σi+j < 0 (20)

for i = 0, 1, · · · , L − 1, in which σi+j = σ(i+j)modL.
Proof (Necessity) If {x0, x1, · · · } is a periodic orbit

with period L, then denote σi = si = sgn (cTxi), for
i = 0, 1, · · · , L − 1. Since {x0, x1, · · · } is periodic with
period L, we have

xi = (I − AL)−1
L−1∑
j=0

AL−j−1b σi+j ,

for i = 0, 1, · · · , L − 1. Hence,

cT(I − AL)−1
L−1∑
j=0

AL−j−1b σi+j = cTxi,

which implies the conditions of the theorem.
(Sufficiency) Denote

x(i) = (I − AL)−1
L−1∑
j=0

AL−j−1b σj+i, (21)

and

f(x) = Ax + b sgn (cTx).

It is straightforward to verify that under the conditions of
the theorem, f (i)(x(0)) = x(i), for i = 0, 1, · · · , L − 1 and
f (L)(x(0)) = x(0), i.e., the orbit starting at x(0) has period
L.

A Δ-modulated system can have many periodic points.
The first interesting result is the following.

Corollary 1 i) If (A, b) is controllable, then there is a
c ∈ R

n such that the closed-loop system (1) and (18) has
n-periodic orbits.

ii) If (cT, A) is observable, then there is a b ∈ R
n such

that the closed-loop system (1) and (18) has n-periodic or-
bits.

Proof We prove i) only. For n = 1, choose c = b, and
for n = 2, choose

c = (I − A2)(Ab − b).

It can be verified that these two choices result in 1-periodic
points for n = 1 and 2-periodic points for n = 2, respec-
tively.

For n � 3, since the controllability of (A, b) implies the
existence of the inverse in the expression, we choose cT as

(1, 0, · · · , 0)
(
An−1b · · · Ab b

)−1
(I − An).

Then, for any binary sequence {s0, s1, · · · , sn−1},

cT(I − An)−1(An−1bs0 + · · · + bsn−1) = s0.

So, the inequalities in (19) and (20) hold. By Theorem 7, for
this choice of c, any n binary sequence gives rise to an orbit
of period n.

Choose a sequence s0 = 1, si = −1, for i = 1, · · · , n −
1. According to (21), the periodic orbit generated by it con-

sists of the following n points:

x(i) = (I − An)−1
n−1∑
j=0

An−j−1bsj+i.

It can be verified that these n points are different; there-
fore, this orbit is n-periodic. Actually, it can be proved that
x(0), x(1), · · · , x(n−1) are linearly independent.

The criterion in (19) and (20) is useful in deriving con-
crete results about the existence of periodic orbits of a cer-
tain order.

Proposition 1 i) System (1) under the Δ-modulation
of (18) has a fixed (1-periodic) point iff cT(I −A)−1b � 0.

ii) System (1) under the Δ-modulation of (18) has a 2-
periodic orbit iff cT(I + A)−1b < 0.

iii) System (1) under the Δ-modulation of (18) has a 3-
periodic orbit iff

2max{cT(I − A3)−1b, cT(I − A3)−1Ab}
< cT(I − A)−1b � 2cT(I − A3)−1A2b.

iv) System (1) under the Δ-modulation of (18) has a 4-
periodic orbit iff

2 max
0�i�2

cT(I − A4)−1Aib < cT(I − A)−1b

� 2cT(I − A4)−1A3b,

or

cT(I − A)−1b > 2max{cT(I − A4)−1(A + I)b,
cT(I − A4)−1(A2 + A)b}.

5 Other generalizations

Some generalizations are made in [26∼28].

5.1 Unbalanced Δ-modulated systems

In the first case, the following discrete-time nonlinear
system is considered:

xn+1 = axn + u, (22)

under the so-called unbalanced Δ-modulated feedback
(UDMF)

u = Δ(ax) def=

{
−Δ1, ax � 0,

Δ2, ax < 0,
(23)

where Δ1 and Δ2 are given positive real numbers, Δ1 �=
Δ2.

It should be noted that Δ-modulated control is a special
case of UDMF, e.g., the balanced case with Δ1 = Δ2. In the
same application area of transmitting power control, it has
witnessed the flexibility of unbalanced Δ-modulated feed-
back in, i.e., [32, 33]. All these motivate a careful study of
systems (22) and (23).

Define γ =
Δ2

Δ1
. Then, γ �= 1.

System (22) is referred to as a system of Type I when
a > 0, and system of Type II when a < 0, respectively.
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We have only considered the case when the parameter
0 <| a |� 1.

The results in [26] can be summarized in the following.
A system of Type II has only two fixed points and the

set of fixed points is globally attracting. For 0 < a < 1,
systems of Type I have no fixed points, and there is a denu-

merable set of values for the ratio γ =
Δ2

Δ1
, and for each

parameter γ of the denumerable set, systems of Type I have
no periodic orbits and, in this case, every orbit is dense in
the state interval [−Δ1, Δ2). To each of the other rate val-
ues of γ, systems of Type I all have a unique periodic orbit.
The structural property of the periodic motion is robust; i.e.,
there exists an interval including this value γ such that all
parameters in this interval correspond to those periodic or-
bits of the same structural property. For the case of a = 1,
all points in the interval [−Δ1, Δ2) are n−periodic with
n � 3 when γ is a rational number, and every orbit is dense
in the interval [−Δ1, Δ2) when γ is an irrational number.
Moreover, every such unique periodic orbit is globally at-
tracting for both types of systems.

5.2 Quantized feedback systems

A first-order discrete-time control system with a two-
level quantized feedback is considered in [27]:

x+ = f(x) def= ax − q(x), (24)

where the scaling factor a > 0 is a real number, the quan-
tized feedback q(x) is defined as

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x � 0.5,

0, −0.5 < x < 0.5,

−1, x � −0.5.

A first simple result is the following.
Proposition 2 When 0 < a � 1, there are only three

periodic points of the system (1) {0,±1/(a + 1)}, and 0 is
1-periodic (fixed point), and ±1/(a+1) are 2-periodic. The
set {0,±1/(a + 1)} are globally attracting.

Then the study also starts with special classes of polyno-
mials.

We define the following four sets of polynomials:

p1(a) = p1(a) = a − 1,

q1(a) = q1(a) = a − 3,

p2(a) = p2(a) = a2 − 3,

q2(a) = q2(a) = a2 − 2a − 1,

and for n � 3,

pn(a) = an − 2an−2 − 1,

qn(a) = an − 2an−1 − 1,

pn(a) = an − 2an−2 − 2an−3 − · · · − 2a − 3,

qn(a) = an − 2an−1 − 2an−3 − · · · − 2a − 3.

These polynomials have a very special property: the poly-

nomials p1(a) and p1(a) have their only root at a = 1, and
all other polynomials have only one real root in (1,∞).

Lemma 4 i) For n � 2, each of the polynomials
pn(a), qn(a), pn(a) and qn(a) has only one real root in
(1,∞).

ii) Denote p
1
, q

1
, p̄1 and q̄1 the root of p1(a), q1(a),

p1(a) and q1(a), respectively, and for n � 2, denote
p

n
, q

n
, p̄n and q̄n the only root of pn(a), qn(a), pn(a) and

qn(a) in (1,∞), respectively. Then for n � 3,
ii.1) p

n+1
< p

n
and lim

n→∞ p
n

=
√

2;

ii.2) q
n+1

< q
n

and lim
n→∞ q

n
= 2;

ii.3) p̄n+1 > p̄n and lim
n→∞ p̄n = 2;

ii.4) q̄n+1 > q̄n and

lim
n→∞ q̄n = 1 +

3
p

27 + 11
√

6

3
+

1
3
p

27 + 11
√

6
.= 2.5241.

Then, results on the periodicity of system (24) can be par-
tially characterized in the following theorem.

Theorem 8 i) For any n = 1, 2, · · · , system (24) has
non-zero n-periodic points if p

n
< a � q̄n.

ii) a � q̄n is necessary for having an n-periodic point.

5.3 Uplink delayed systems

In the last generalizaation, we performed a complete
spectral analysis of system

xn+1 = xn − sgn (xn−k), (25)

in which xi ∈ R is a scalar signal, and the fixed integer
k � 0 represents the loop delay. A special feature of the Δ-
modulated feedback system (25) is the existence of a delay
in the feedback loop. This kind of systems with loop de-
lays appear in, among others, transmitting power control of
a mobile unit in a Direct Sequence Code Division Multiple
Access (DS-CDMA) cellular network [11] and in the study
of nonlinear dynamics of digital bang-bang Phase-Locked-
Loops (PLLs) [34].

It will be seen that the spectral properties of system (25)
is completely different from that of the “up-link” delayed
system. If we realize system (1) by a higher-order system,
then it is only critically stable and the results of [31] cannot
be directly applied.

The results on the existence of periodic orbits of system
(25) can be elegantly stated and rigorously proved: every
orbit of system (25) is eventually periodic with a prime pe-
riod of the form 2(2j + 1) for some integer j, 0 � j � k,
such that 2(2j + 1) divides k − j. A byproduct of these re-
sults is: in case of multiple periods, all the smaller periods
divide the maximal period. In other words, in case of mul-
tiple frequencies, it consists of the primary frequency and
some of its harmonics (multiples of the primary frequency).
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“Overtune” will never happen to the system.
Periods for delays up to 39 are given in the table.

Table 1 Periods for delays up to 39.

delay k period delay k period

0 2 20 2, 82
1 6 21 86
2 2, 10 22 2, 10, 18, 90
3 14 23 94
4 2, 18 24 2, 98
5 22 25 6, 102
6 2, 26 26 2, 106
7 6, 30 27 22,110
8 2, 34 28 2, 114
9 38 29 118
10 2, 42 30 2, 122
11 46 31 6, 14, 126
12 2,10,50 32 2, 10, 26, 130
13 6, 54 33 134
14 2, 58 34 2, 138
15 62 35 142
16 2, 66 36 2, 146
17 14,70 37 6, 30, 150
18 2, 74 38 2, 154
19 6, 78 39 158

6 Conclusions

The existence of periodic points of all orders of Sigma-
Delta modulation with “leaky” integration has been com-
pletely characterized by making use of some interesting
groups of polynomials with “sign” coefficients. The results
have also been extended to Sigma-Delta modulations with
multiple delays in a natural way. Further extensions have
been made to the existence of periodic points arising from
Δ-modulated feedback control of a stable linear system in
an arbitrary direction, for which some necessary and suffi-
cient conditions have been derived. Thus, this investigation
is self-contained and relatively complete. Finally, the paper
has also described some possible generalizations of the re-
sults.
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