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Analysis and control of human immunodeficiency virus (HIV) infection have attracted
the interests of mathematicians and control engineers during the recent years. Several
mathematical models exist and adequately explain the interaction of the HIV infection
and the immune system up to the stage of clinical latency, as well as viral suppression
and immune system recovery after treatment therapy. However, none of these models can
completely exhibit all that is observed clinically and account the full course of infection.
Besides model inaccuracies that HIV models suffer from, some disturbances/uncertainties
from different sources may arise in the modelling. In this paper we study the basic
properties of a 6-dimensional HIV model that describes the interaction of HIV with two
target cells, CD4+ T cells and macrophages. The disturbances are modelled in the HIV
model as additive bounded disturbances. Highly Active AntiRetroviral Therapy (HAART) is
used. The control input is defined to be dependent on the drug dose and drug efficiency.
We developed treatment schedules for HIV infected patients by using robust multirate
Model Predictive Control (MPC)-based method. The MPC is constructed on the basis of the
approximate discrete-time model of the nominal model. We established a set of conditions,
which guarantee that the multirate MPC practically stabilizes the exact discrete-time model
with disturbances. The proposed method is applied to the stabilization of the uninfected
steady state of the HIV model. The results of simulations show that, after initiation of
HAART with a strong dosage, the viral load drops quickly and it can be kept under a
suitable level with mild dosage of HAART. Moreover, the immune system is recovered with
some fluctuations due to the presence of disturbances.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decade a tremendous effort has been made in developing mathematical models of the immunology dy-
namics under the attack of the human immunodeficiency virus (HIV) and under the influence of antiretroviral therapies.
HIV is responsible of acquired immunodeficiency syndrome (AIDS). HIV is a retrovirus which infects the CD4+ T cells and
macrophages which are the crucial immune responses and play important roles in phagocytosis. After infection, the CD4+ T
cells lose their function and become a virus factory, producing new virus particles until its death. Macrophages live longer
than the CD4+ T cell and it is an important source of virus after CD4+ T cell depletion. When the number of CD4+ T cell
reaches below 200 cell/mm3 of plasma, the HIV infected patient is regarded as an AIDS patient.
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The treatment of HIV infected patients is of major importance in today’s social medicine. Currently, the most important
categories of anti-HIV drugs are reverse transcriptase inhibitors (RTI) drugs and protease inhibitors (PI) drugs. Reverse
transcriptase inhibitors prevent the HIV from infecting cells by blocking the integration of the HIV viral code into the
host cell genome. Protease inhibitors prevent already infected host cells from producing infectious virus particles. Recently,
Highly Active AntiRetroviral Therapies (HAART) which consist of one or more RTI and a PI, can suppress viral load below
detectable levels and consequently prolong time to the onset of AIDS.

Optimal treatment scheduling of HIV infection using a control theoretic approach is the subject of substantial research
activity. In [13,24,28,9,23,1,27,38], open-loop type optimal controllers are designed using the Pontryagin’s Maximum Princi-
ple. A major drawback of open-loop optimal controllers is their lack of robustness against disturbances/model uncertainties.
In fact, HIV dynamics are poorly known, this leads to model inaccuracies and parameter uncertainties. Also, another source
of disturbances may arise from immune system fluctuating or immune effect of a coinfection, in addition to the measure-
ments errors and estimation errors when using an observer to estimate the unmeasured states. Therefore, the design of
optimal treatment schedules based on open loop optimal controller, may lead to undesired results. To overcome this prob-
lem, we have to design a feedback controller, that inherits a certain robustness to disturbances. Feedback control for HIV
has been studied by [3,5,4].

In the last few years, model predictive control (MPC) method is developed for determining optimal treatment schedules
for HIV patients [37,11,12,39,20,17]. The MPC method obtains the feedback control by solving a finite horizon optimal
control problem at each time instant using the current state of the system as the initial state for the optimization and
applying “the first part” of the optimal control. The study of stabilizing property of such schemes has been the subject of
intensive research in recent years (see e.g. [15,2,29]).

In [39], the MPC is constructed on the basis of the discrete-time model where the sampling period is chosen to be
seven days (i.e., τ = 7). However, the authors did not consider the effect of the discretization of the differential equations
on the stability analysis. Moreover, for large sampling periods, the viral load and the CD4+ T cell count could not be kept
within baseline ranges (see [25]). Alternatively, the optimal control problems can be solved by continuously varying drug
levels in [37]. However, continuous-time variation of the dose seems hard to apply in the clinical treatment of patients.
In [11] and [12], the HIV model is discretized with a suitable numerical method with short sampling period, and the MPC
is designed on the basis of the approximate discrete-time model. For short sampling period, MPC is hard to apply to HIV
model, because it requires the availability of blood measurements every sampling instants (iτ , i = 0,1, . . .). A possible
solution of this problem is to design a multirate version of MPC, where the measurements are needed every � samplings
(iτ�, i = 0,1, . . .) (see [17] and [18]). In [37] and [39], it is shown only by simulation that the applied MPC have a certain
degree of robustness to measurements and modelling errors.

The aim of the present paper is to develop treatment schedules for HIV infected patients by using robust multirate MPC.
The disturbances are modelled in the HIV model as additive bounded disturbances. The construction of MPC is based on
the approximate discrete-time model of the nominal model. We have shown that under suitable conditions, the multirate
MPC practically stabilizes the exact discrete-time model with disturbances. These conditions have been verified for the HIV
model. The importance of approximate discrete-time design is supported by a series of counter-examples (see e.g. [31,30]
and [16]), which show that even for disturbance-free systems one can design a controller to stabilize the approximate
model, but the original model is destabilized by the same controller. In [39], the MPC method is applied to an HIV model
without verifying the stability conditions of the proposed method such as the asymptotic controllability of the system and
the delectability condition.

The model of HIV infection we will use in this paper, considers the infection process of the HIV with two target cells,
CD4+ T cells and macrophages, which is a 6-dimensional nonlinear ODEs model. The importance of considering such model
is due to the observation of Perleson el al., that after the rapid first phase of decay during the initial 1–2 weeks of an-
tiretroviral treatment, plasma virus levels declined at a considerably slower rate [34]. This second phase of viral decay was
attributed to the turnover of a longer-lived virus reservoir of infected cell population. Therefore, the two target cells model
is more accurate than the one target cell model (see [35] and [7]). Models used in [37,11,12,39,17] do not capture the
detailed viral dynamics the occur in macrophages. In our paper, we studied the basic properties of the 6-dimensional HIV
model with additive disturbances. Note that these basic properties of the 6-dimensional HIV model are not well studied
in the literature, compared with those of, say, the 4-dimensional model [33], and they are important for understanding
the associated characteristics of the HIV dynamics. This also helps us to verify the stability conditions of the MPC method.
The simulation results show that after initiating the HAART, the viral load drops dramatically and it can be kept under a
suitable level by using a mild dosage of HAART. Moreover, the immune system returns near to the normal status with some
fluctuations due to the presence of disturbances.

The layout of the paper is as follows: In Section 2, we introduce the HIV model and study its basic properties. In Sec-
tion 3, we outline the robust multirate MPC design for sampled-data nonlinear systems and summarize the main results
obtained in [16] and [10]. Application of robust MPC to the HIV model is given in Section 4. Section 5 presents the simula-
tion results. The last section is the conclusion.
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2. HIV model

We shall use the mathematical model of HIV infection proposed by ([35] and [7]), incorporating to allow some distur-
bances. For simplicity we shall assume that the disturbances are model as additive which can model perturbed systems and
a wide class of model mismatches. This model describes two co-circulation populations of target cells, potentially repre-
senting CD4+ T cells and macrophages. The model can simulate differential drug penetration into target cell co-circulating
in plasma, see [19]. After initiation of HAART which consists of RTI and PI drugs the model can be written as:

Ṫ = s1 − d1T − β1T V + w1, (1)

Ṫ1 = q1e−u1β1T V − k1T1 − μ1T1 + w2, (2)

Ṫ2 = q2e−u1β1T V + k1T1 − μ2T2 + w3, (3)

Ṁ = s2 − d2M − β2M V + w4, (4)

Ṁ1 = qMe−u1β2M V − δM1 + w5, (5)

V̇ = e−u2 p1T2 + e−u2 p2M1 − cV + w6. (6)

The state variables describes the plasma concentrations of: T , the uninfected CD4+ T cells; T1, the latently infected CD4+ T
cells; T2, the actively infected CD4+ T cells; M , the uninfected macrophages; M1, the infected macrophages; and V , the free
virus particles.

The populations of the uninfected CD4+ T cells and macrophages are described by Eqs. (1) and (4), respectively, where
s1 and s2 represent, respectively, the rates of which new CD4+ T cell and macrophages are generated from sources within
the body, d1, d2 are the death rate constants, and β1, β2 are the infection rate constants. Here, the law of mass action was
used. Eq. (2) describes the population dynamics of the latently infected CD4+ T cells and shows that they convert to actively
produce virus with a rate constant k1 and μ1 is their death rate constant. Eq. (3), describes the population dynamics of the
actively infected CD4+ T cells and shows that they die with rate constant μ2. Constants q1 and q2 are the probabilities that
upon infection a CD4+ T cell become either latent or actively producing virus. In Eq. (5), qM is the probability of successfull
infection, δ is the death rate constant of the infected macrophages. The virus particles are produced by the actively infected
CD4+ T cells and infected macrophages with rate constants p1 and p2, respectively, and are cleared from plasma with rate
constant c. We emphasize that all the parameters of the model are positive and they differ from one patient to another.
For the estimation of HIV model parameters, we refer the reader to the following papers [40,41,22,42]. The effect of the RTI
and PI drugs are represented by the chemotherapy functions e−ψ1m1(t) and e−ψ2m2(t) where ψ1 and ψ2 are the efficiencies
of RTI and PI drugs, respectively, and m1(t) and m2(t) are the drug dose at time t (see [6]). We shall consider the control
input as ui(t) = ψimi(t), i = 1,2.

In Eqs. (1)–(6), wi(t) describes model uncertainties/disturbances that may arise from different sources such as, modelling
errors, immune system fluctuation, immune effect of a co-infection, measurement noise, estimation errors, and so on.

We assume that, the model uncertainties/disturbances satisfy the following bound∥∥wi(t)
∥∥� εi, εi � 0, i = 1, . . . ,6. (7)

We are now ready to present a study on the basic mathematical properties of the model.

2.1. Positive invariance

Now we show that the model (1)–(6) is biologically acceptable in the sense that no population goes negative. To do so,
we show that under which conditions the nonnegative orthant R

6+ is positively invariant for (1)–(6):

Ṫ |(T =0) = s1 + w1 � 0 if w1 � −s1,

Ṫ1|(T1=0) = q1e−u1β1T V + w2 � 0 if w2 � −q1e−u1β1T V ,

Ṫ2|(T2=0) = q2e−u1β1T V + k1T1 + w3 � 0 if w3 � −q2e−u1β1T V − k1T1,

Ṁ|(M=0) = s2 + w4 � 0 if w4 � −s2,

Ṁ1|(M1=0) = qMe−u1β2M V + w5 � 0 if w5 � −qMβ2e−u1 M V ,

V̇ |(V =0) = e−u2 p1T2 + e−u2 p2M1 + w6 � 0 if w6 � −e−u2 p1T2 − e−u2 p2M1, (8)

with (T , T1, T2, M, M1, V ) � 0. This means that under the above conditions the nonnegative orthant R
6+ is positively invari-

ant, namely, if a trajectory starts in the nonnegative orthant, it remains there. We note that, the conditions in (8) give a
lower bound of the disturbances only at the boundary of R

6+ .
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Proposition 1. Suppose that the disturbances satisfy the bound (7) and q1,q2 and qM satisfy q1 + q2 � 1 and qM � 1, then there
exists such positive numbers L1 , L2 and L3 that the compact set

Ω = {(T , T1, T2, M, M1, V ): 0 � T , T1, T2 � L1, 0 � M, M1 � L2, 0 � V � L3
}
, (9)

is positively invariant.

Proof. Let Ttot = T + T1 + T2, and Mtot = M + M1. Then

Ṫ tot = (e−u1 q1 + e−u1 q2 − 1
)
β1T V + s1 + w1 + w2 + w3 − d1T − μ1T1 − μ2T2

� (q1 + q2 − 1)β1T V + s1 + w1 + w2 + w3 − d1T − μ1T1 − μ2T2

� s1 + ε1 + ε2 + ε3 − σ1Ttot,

Ṁtot = (e−u1 qM − 1
)
β2M V + s2 + w4 + w5 − d2M − δM1

� (qM − 1)β2M V + s2 + w4 + w5 − d2M − δM1

� s2 + ε4 + ε5 − σ2Mtot,

where σ1 = min{d1,μ1,μ2} and σ2 = min{d2, δ}. Hence 0 � Ttot(t) � s1+ε1+ε2+ε3
σ1

for all t � 0 if Ttot(0) � s1+ε1+ε2+ε3
σ1

, and

0 � Mtot(t) � s2+ε4+ε5
σ2

for all t � 0 if Mtot(0) � s2+ε4+ε5
σ2

. It follows that 0 � T (t), T1(t), T2(t) � L1 and 0 � M(t), M1(t) � L2

for all t � 0 if T (0), T1(0), T2(0) � L1, and M(0), M1(0) � L2, where L1 = s1+ε1+ε2+ε3
σ1

and L2 = s2+ε4+ε5
σ2

. On the other hand,

V̇ (t) � e−u2 p1L1 + e−u2 p2L2 − cV + w6 � p1L1 + p2L2 − cV + ε6,

then 0 � V (t) � L3 for all t � 0, if V (0) � L3, where L3 = p1 L1+p2 L2+ε6
c . �

Note that Ω contains all the biologically relevant states, thus we can restrict the state space of the system to the compact
set Ω . Since the drug doses cannot be arbitrarily increased we may consider a compact control constraint set only.

2.2. Steady states

We shall compute the steady states of system (1)–(6) under constant controller in the absence of the disturbances, i.e.,
for u j(t) = u j , j = 1,2, and wi(t) = 0, i = 1,2, . . . ,6, t � 0. A steady state (T , T1, T2, M, M1, V ) satisfies

s1 − d1T − β1T V = 0, (10)

q1e−u1β1T V − k1T1 − μ1T1 = 0, (11)

q2e−u1β1T V + k1T1 − μ2T2 = 0, (12)

s2 − d2M − β2M V = 0, (13)

qMe−u1β2M V − δM1 = 0, (14)

e−u2 p1T2 + e−u2 p2M1 − cV = 0. (15)

Solving T1, T2 and M1 from equations (11), (12) and (14) in terms of T V and/or M V and inserting them into (15) we
obtain

(a4T + a5M − c)V = 0, (16)

where

a4 = p1β1[k1q1 + (k1 + μ1)q2]e−(u1+u2)

μ2(k1 + μ1)
, a5 = p2β2qMe−(u1+u2)

δ
.

The first solution of (16) is V = 0. Then substituting it in (10)–(14), we obtain the uninfected steady state E0 =
(T0,0,0, M0,0,0) where T0 = s1

d1
, M0 = s2

d2
. If V �= 0, then

a4T + a5M − c = 0, (17)

and by eliminating V from Eqs. (10) and (13) we obtain

a3T − a2T M − a1M = 0, (18)

where

a1 = s1β2, a2 = β1d2 − β2d1, a3 = s2β1.

We note that the coefficients a1, a3, a4 and a5 are positive, while a2 may be positive, or negative, or equal zero.
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If a2 = 0, then the solutions of (17) and (18) are given by

T ∗
0 = a1c

a1a4 + a3a5
, M∗

0 = a3c

a1a4 + a3a5
.

If a2 �= 0, there are two possible solutions for (17) and (18)

T ∗+ = −(a1a4 + a3a5 − a2c) +√(a1a4 + a3a5 − a2c)2 + 4a1a2a4c

2a2a4
,

M∗+ = 1

a5

(
c − a4T ∗+

)
,

T ∗− = −(a1a4 + a3a5 − a2c) −√(a1a4 + a3a5 − a2c)2 + 4a1a2a4c

2a2a4
,

M∗− = 1

a5

(
c − a4T ∗−

)
.

Now we have to determine the positive solutions. First, we show that the discriminate 
 = (a1a4 + a3a5 − a2c)2 + 4a1a2a4c,
is positive

if a2 > 0, 
 = (a1a4 + a3a5 − a2c)2 + 4a1a2a4c > 0,

if a2 < 0, 
 = (a1a4 + a3a5 + a2c)2 − 4a2a3a5c > 0,

it follows that if a2 > 0 then

T ∗+ = −(a1a4 + a3a5 − a2c) +√(a1a4 + a3a5 − a2c)2 + 4a1a2a4c

2a2a4
> 0,

and if a2 < 0, let a2 = −a2 and then

T ∗+ = (a1a4 + a3a5 + a2c) −√(a1a4 + a3a5 + a2c)2 − 4a1a2a4c

2a2a4
> 0.

Similarly, it is easy to see that

a2 > 0 �⇒ T ∗+ > 0, and M∗+ > 0,

a2 < 0 �⇒ T ∗+ > 0, and M∗+ > 0,

a2 > 0 �⇒ T ∗− < 0, and M∗− > 0,

a2 < 0 �⇒ T ∗− > 0, and M∗− < 0.

Then, the only positive solutions are T ∗ = T ∗+ and M∗ = M∗+. Substituting them in Eqs. (10)–(14), we obtain the infected
steady state which is given by E1 = (T ∗, T ∗

1 , T ∗
2 , M∗, M∗

1, V ∗) where

T ∗ =
{

T ∗
0 , if a2 = 0,

T ∗+, if a2 �= 0,
M∗ =

{
M∗

0, if a2 = 0,

M∗+, if a2 �= 0,

T ∗
1 = q1e−u1d1

k1 + μ1

(
T0

T ∗ − 1

)
T ∗, T ∗

2 = e−u1 qd1

μ2(k1 + μ1)

(
T0

T ∗ − 1

)
T ∗,

M∗
1 = qMe−u1d2

δ

(
M0

M∗ − 1

)
M∗, V ∗ = d1

β1

(
T0

T ∗ − 1

)
, (19)

where, q = k1q1 + (k1 + μ1)q2.
Let us define

Rc
0(u1, u2) = {p1β1T0δq + p2qMβ2M0(k1 + μ1)μ2}e−(u1+u2)

cδ(k1 + μ1)μ2
.

Lemma 1. The infected steady state E1 exists if and only if Rc > 1.
0
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Proof. Assume that Rc
0 > 1, we have shown already that T ∗ > 0 and M∗ > 0, we have to show the remaining components

of E1, i.e., T ∗
1 , T ∗

2 , M∗
1, V ∗, are positive.

We can see that T ∗ and M∗ can be written as follows

T ∗ = A1

Rc
0

− B1 +
√(

B1 − A1

Rc
0

)2

+ 2a1 A1

a2 Rc
0

, if a2 > 0, (20)

T ∗ = A1

Rc
0

+ B1 −
√(

B1 + A1

Rc
0

)2

− 2a1 A1

a2 Rc
0

, if a2 < 0, (21)

T ∗ = T0

Rc
0
, if a2 = 0, (22)

M∗ = A2

Rc
0

+ B2 −
√(

B2 + A2

Rc
0

)2

− 2a3 A2

a2 Rc
0

, if a2 > 0, (23)

M∗ = A2

Rc
0

− B2 +
√(

B2 − A2

Rc
0

)2

+ 2a3 A2

a2 Rc
0

, if a2 < 0, (24)

M∗ = M0

Rc
0

, if a2 = 0, (25)

where, a2 = −a2, B1 = −B1, B2 = −B2 and

A1 = 1

2
T0 + p2qMβ2M0(k1 + μ1)μ2

2p1β1δq
, B1 = β2

2a2

[
T0d1 + p2qM M0d2(k1 + μ1)μ2

p1δq

]
,

A2 = 1

2
M0 + p1T0β1δq

2p2β2qM(k1 + μ1)μ2
, B2 = β1

2a2

[
M0d2 + p1T0d1δq

p2qMμ2(k1 + μ1)

]
.

From Eqs. (20)–(25), it can be seen that T ∗ and M∗ are decreasing functions of Rc
0.

Now we show that if Rc
0 = 1 then T ∗ = T0 and M∗ = M0. Eqs. (20), (21), (23) and (24) can be simplified to the following

T ∗ = A1 − B1 +
√(

T0β1d2

2a2
+ β2

2 d1M0 p2qM(k1 + μ1)μ2

2a2β1 p1δq

)2

= A1 − B1 +
√

(B1 + T0 − A1)2 = T0, a2 > 0,

T ∗ = A1 + B1 −
√(

T0β1d2

2a2
+ β2

2 d1M0 p2qM(k1 + μ1)μ2

2a2β1 p1δq

)2

= A1 + B1 −
√

(A1 + B1 − T0)2 = T0, a2 < 0,

M∗ = A2 + B2 −
√(

M0β2d1

2a2
+ β2

1 d2T0 p1δq

2a2β2 p2qMμ2(k1 + μ1)

)2

= A2 + B2 −
√

(A2 + B2 − M0)2 = M0, a2 > 0,

M∗ = A2 − B2 +
√(

M0β2d1

2a2
+ β2

1 d2T0 p1δq

2a2β2 p2qMμ2(k1 + μ1)

)2

= A2 − B2 +
√

(B2 − A2 + M0)2 = M0, a2 < 0.

From the above analysis we obtain the following:

Rc
0 = 1 �⇒ E1 = E0,

Rc
0 > 1 �⇒ 0 < T ∗ < T0, 0 < M∗ < M0, and T ∗

1 , T ∗
2 , M∗

1, V ∗ > 0,

Rc
0 < 1 �⇒ T ∗ > T0, M∗ > M0, and T ∗

1 , T ∗
2 , M∗

1, V ∗ < 0.

Now assume that the steady state E1 exists then T ∗
1 , T ∗

2 , M∗
1, V ∗ > 0, and from (19) we obtain T ∗ < T0, and M∗ < M0. It

follows from (17) that Rc
0 > 1. �

2.3. Local stability of E0

Proposition 2. If Rc < 1, then E0 is locally asymptotically stable for the nominal system.
0
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Proof. Let us linearized the nominal system (1)–(6) with constant controllers around E0. The coefficient matrix is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 0 0 −T0β1

0 −k1 − μ1 0 0 0 q1e−u1 T0β1

0 k1 −μ2 0 0 q2e−u1 T0β1

0 0 0 −d2 0 −M0β2

0 0 0 0 −δ qMe−u1 M0β2

0 0 p1e−u2 0 p2e−u2 −c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The characteristic equation is given by:

Det( J − λI) = (λ + d1)(λ + d2)
[
λ4 + b3λ

3 + b2λ
2 + b1λ + b0

]= 0,

where

b0 = −{p1β1T0δq + p2qMβ2M0(k1 + μ1)μ2
}

e(−u1−u2) + cδ(k1 + μ1)μ2 = cδ(k1 + μ1)μ2
(
1 − Rc

0

)
,

b1 = −{p1β1T0(q + δq2) + p2qMβ2M0(k1 + μ1 + μ2)
}

e(−u1−u2) + cδ(μ1 + μ2 + k1) + μ2(c + δ)(μ1 + k1),

b2 = −{p1T0q2β1 + p2qMβ2M0}e(−u1−u2) + δ(μ1 + k1) + μ2(δ + μ1 + k1) + c(μ1 + μ2 + δ + k1),

b3 = c + μ1 + μ2 + δ + k1.

We note that b1 and b3 are positive, then by using the condition Rc
0 < 1 we can show the following:

b1 > μ2δ(μ1 + k1) > 0,

b2 > δ(μ1 + k1) + μ2(δ + μ1 + k1) + c(μ1 + k1) > 0.

Moreover, the Routh–Hurwitz criteria hold. Then, E0 is locally asymptotically stable. �
Remark 1. For the parameters given in Table 1, we can see that, when there is no treatment, Rc

0|(u1=u2=0) = 2.46493, then
E0 is unstable. In contrast, when we linearized the nominal model around the infected steady state E1, we found that all
eigenvalues of the jacobian matrix have a negative real part, this means that E1 is locally asymptotically stable.

2.4. Global stability of E0

Proposition 3. If Rc
0(u1, u2) � 1, then E0 is globally asymptotically stable for the nominal system.

Proof. By the method of Korobeinikov [26], we define a Lyapunov function for the nominal system

W (T , T1, T2, M, M1, V ) = γ1T0

[
T

T0
− ln

(
T

T0

)
− 1

]
+ γ2M0

[
M

M0
− ln

(
M

M0

)
− 1

]
+ γ3T1 + γ4T2 + γ5M1 + γ6 V

with

γ1 = e−u1−u2 p1δq, γ2 = e−u1−u2 p2qMμ2(k1 + μ1),

γ3 = e−u2 p1k1δ, γ4 = e−u2 p1δ(k1 + μ1),

γ5 = e−u2 p2μ2(k1 + μ1), γ6 = μ2δ(k1 + μ1).

We note that W is defined, continuous and positive definite for all (T , T1, T2, M, M1, V ) > 0. Also, the global minimum
W = 0 occurs at the uninfected steady state E0. Further, it satisfies

dW

dt
= s1γ1

[
2 − T

T0
− T0

T

]
+ s2γ2

[
2 − M

M0
− M0

M

]
+ γ6c

[
Rc

0 − 1
]
V . (26)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the first two terms of (26) are less than
or equal to zero. Therefore, if Rc � 1 then dW � 0 for all T , M, V > 0. �
0 dt
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In fact, Rc
0 can be written as a sum of two parameters Rc

T and Rc
M

Rc
0 = Rc

T + Rc
M ,

Rc
T = p1β1s1qe−(u1+u2)

cd1(k1 + μ1)μ2
,

Rc
M = p2qMβ2s2e−(u1+u2)

cδd2
.

We observe that Rc
T and Rc

M are the basic reproduction ratio of each T-cell and macrophages dynamics separately. If Rc
0 < 1

then it is sure that Rc
T < 1 and Rc

M < 1. But if one considers only the four-dimensional model (10)–(12) and (15) and
designs a controller such that Rc

T < 1, then the whole system may be unstable around E0, because Rc
0 > 1. This shows the

importance of considering the effect of the macrophages in the HIV dynamics.

Proposition 4. The nominal system (1)–(6) is globally asymptotically controllable to E0 with piecewise constant controllers.

Proof. Let u1(t) = û1 and u2(t) = û2 with û1 + û2 > uc , where

uc = ln

(
p1β1T0δq + p2qMβ2M0(k1 + μ1)μ2

cδ(k1 + μ1)μ2

)
.

Then Rc
0 (̂u1, û2) < 1, therefore the corresponding trajectory will tend to E0 as t → ∞. �

Remark 2. We observe that uc is the minimum controller required to obtain a treatment steady state viral load of zero.
Also, by solving the equation for V ∗ , the minimum drug dose that is required to obtain a treatment steady state viral load
below a specific value V sup (e.g. V sup = 50 copies mL−1) is given by

û1 + û2 > usup = ln

(
p1β1T0qd1

cμ2(d1 + V supβ1)(k1 + μ1)
+ p2qMβ2M0d2

δc(d2 + V supβ2)

)
.

Remark 3. If one does not take into account the effect of macrophages cells, then our stability results are also useful for the
four-dimensional model T , T1, T2 and V , by putting s2 = d2 = β2 = δ = p2 = 0 (see [33]).

3. Robust multirate MPC for sampled-data systems

In this section, we outline the multirate MPC design for sampled-data nonlinear systems in the presence of bounded
disturbances and give a review on the results obtained in [16] and [10]. We have shown in the preceding section that, the
HIV system states can be taken from a compact set. Moreover, since the drug dosage of HAART cannot arbitrarily increased,
thus the controller can also be taken from a compact set. Therefore, we give only a short outline of the proof of the main
results of [10], when both the state space of the system and the control constraint set are restricted to compact sets.

The set of real and natural numbers (including zero) are denoted, respectively, by R and N. The notation R�0 denote
the set of real numbers in the interval [0,∞). A continuous function σ : R�0 → R�0 is of class-K if σ(0) = 0, σ(s) > 0 for
all s > 0 and it is strictly increasing. It is of class-K∞ if it is of class-K and σ(s) → ∞ when s → ∞. A continuous function
β : R�0 × R�0 → R�0 is of class-K L if β(s, τ ) is of class-K in s for every τ � 0, it is strictly decreasing in τ for every
s > 0 and β(s, τ ) → 0 when τ → ∞. In what follows, the notation B
 = {z ∈ R

l: ‖z‖ � 
} will be used in R
n.

Consider a continuous-time nonlinear control system with additive disturbances given by

ż(t) = f
(
z(t), u(t)

)+ w(t), z(0) = z0 (27)

where z(t) ∈ R
n , u(t) ∈ U ⊂ R

m , w(t) ∈ W ⊂ R
p are the state, control input and disturbances, respectively, f : R

n × U → R
n

is continuous and Lipschitz continuous w.r.t z in any compact set and f (0,0) = 0, U is compact and 0 ∈ U , W is compact
and 0 ∈ W .

The control is taken to be a piecewise constant signal

u(t) = u(iτ ) =: ui, for t ∈ [iτ , (i + 1)τ
)
, i ∈ N,

where τ > 0 is the control sampling period which is fixed.
In this paper we address the problem of state feedback stabilization of (27) under “low measurement rate”. More pre-

cisely, we shall assume that state measurements can be performed at the time instants jτm , j = 0,1, . . . :

y j := z
(

jτm), j = 0,1, . . . ,

where τm is the measurement sampling period. We assume that τm = �τ for the integer � > 0 which is fixed.
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For a given function w : R�0 → R
n , we use the following notation: wτ [i] := {w(t), t ∈ [iτ , (i + 1)τ ]} where i ∈ N. We

denote the norm ‖w‖∞ := ess. sups�0 ‖w(s)‖. We assume that there exists μ > 0 such that W ⊂ Bμ . Let us define

Wμ = {w ∈ L∞
[0,∞): w(t) ∈ W a.e. t ∈ [0,∞) with ‖w‖∞ � μ

}
,

W ρ
� = {w(i) = {wτ [i�], . . . , wτ

[
(i + 1)� − 1

]}
, w ∈ Wρ, i = 0,1, . . .

}
.

We shall assume that there is a compact set X ⊂ R
n containing the origin, that is positively invariant with respect to

system (27) for any w(.) ∈ W and any piecewise constant controller u ∈ U . Let t �→ Φ E (t, z, u, w(.)) denote the solution
of (27) with given u, w and z = z(0). Then the exact discrete-time model can be defined as

zi+1 = F̃ E
τ

(
zi, ui, wτ [i]), (28)

where F̃ E
τ (z, u, wτ ) := Φ E (τ ; z, u, wτ ).

Let u(i) = {u(i)
0 , . . . , u(i)

�−1}, w(i) = {wτ [i�], . . . , wτ [(i + 1)� − 1]} and F E
� (ξ,u,w) := Φ E (τ�, ξ,u,w), then the exact �-step

discrete-time model is given by

ξ E
i+1 = F E

�

(
ξ E

i ,u(i),w(i)), ξ E
0 = z0. (29)

We note that the exact discrete-time models (28) and (29) describe, respectively, the behavior of the system at the time
instants kτ and k�τ , k = 0,1, . . . .

In this work, the construction of multirate MPC is based on the nominal prediction and only small disturbances are
allowed. The nominal system of (27) is given by

ẋ(t) = f
(
x(t), u(t)

)
, x(0) = z(0), (30)

and its exact discrete-time model is given by

xE
i+1 = F E

τ

(
xE

i , ui
)
. (31)

We note that, since f is typically nonlinear, F E
τ in (31) is not known in most cases, therefore the controller design can be

carried out by means of the nominal approximate discrete-time model

xA
i+1 = F A

τ ,h

(
xA

i , ui
)
, (32)

where h is a modelling parameter, which is typically the step size of the underlying numerical method. The applied numer-
ical scheme approximation has to ensure the closeness of the exact models in the following sense.

Assumption A1. There exists an h∗ > 0 such that

(i) F A
τ ,h(0,0) = 0, F A

τ ,h is continuous in both variables uniformly in h ∈ (0,h∗], and Lipschitz continuous w.r.t x in any
compact set, uniformly in small h,

(ii) there exists a γ ∈ K such that∥∥F E
τ (x, u) − F A

τ ,h(x, u)
∥∥� τγ (h)

for all x ∈ X , all u ∈ U , and h ∈ (0,h∗].

Assumption A2. There exists an h∗ > 0 such that the nominal exact discrete-time model (31) is practically asymptotically
controllable from X to the origin with piecewise constant controllers for all h ∈ (0,h∗]. (See e.g. [16] for the definition.)

For the solutions of (28), (31) and (32) with u = {u0, u1, . . .}, w = {wτ [0], wτ [1], . . .} and x0 we shall use the notations
Φ E

i (x0,u,w), φE
i (x0,u) and φA

i (x0,u), respectively.
The following problem is to be solved: for given τ and � find a control strategy

vh : X → U × U × · · · × U︸ ︷︷ ︸
� times

, vh(x) = {u0(x), . . . , u�−1(x)
}
,

using the nominal approximate discrete-time model (32), to practically stabilize the exact discrete-time system (28).
Let N ∈ N with N � � be given. Let (32) be subject to the cost function

Jτ ,h(N, x,u) =
N−1∑
i=0

τ lh
(
xA

i , ui
)+ g

(
xA

N

)
, (33)

where u = {u0, . . . , uN−1}, xA = φA(x,u), i = 0,1, . . . , N , lh and g are given functions, satisfying the following assumptions.
i i
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Assumption A3. Let X1 = X + B1,

(i) g : X1 → R is continuous, positive definite radially unbounded and Lipschitz continuous in any compact set,
(ii) lh(x, u) is continuous with respect to x and u, uniformly in small h, and Lipschitz continuous in any compact set,

(iii) there exist an h∗ > 0 and two class-K∞ functions ϕ1 and ϕ2 such that the inequality

ϕ1
(‖x‖)� lh(x, u) � ϕ2

(‖x‖)+ ϕ2
(‖u‖),

holds for all x ∈ X1, u ∈ U and h ∈ (0,h∗].

Assumption A4. There exist h∗ > 0 and η > 0 such that for all x ∈ Gη = {x: g(x) � η} there exists a κ(x) ∈ U such that
inequality

τ lh
(
x, κ(x)

)+ g
(

F A
τ ,h

(
x, κ(x)

))
� g(x) (34)

holds true for all h ∈ (0,h∗].

We define the value function, which represents the optimal value of (33) for a given initial condition, as

V N(x) = inf
{

Jτ ,h(N, x,u): ui ∈ U
}
.

If this optimization problem has a solution denoted by u∗ = {u∗
0, . . . , u∗

N−1}, then the first � elements of u∗ are applied
at the state x, i.e.,

vh(x) = {u∗
0(x), . . . , u∗

�−1(x)
}
.

Let h∗
0 denote the minimum of the values h∗ generated by Assumptions A1–A4. Let 
x and 
u be such numbers that

‖x‖ � 
x , ‖u‖ � 
u if x ∈ X , u ∈ U .

Theorem 1. (See [16].) If Assumptions A1–A4 hold true, then

(i) there exist an h∗
1 with 0 < h∗

1 � h∗
0 , and a constant V A

max independent of N, such that V N(x) � V A
max for all x ∈ X , h ∈ (0,h∗

1] and
N ∈ N,

(ii) there exist constants N∗ , LV and δV and functions σ1, σ2 ∈ K∞ such that for all x ∈ X , N > N∗ , h ∈ (0,h∗
1] and i = 1,2, . . . , �,

σ1
(‖x‖)� V N(x) � σ2

(‖x‖),
V N
(
φA

i

(
x,vh(x)

))− V N(x) � −τϕ1
(‖x‖).

Moreover, for all x, y ∈ X1 with ‖x − y‖ � δV ,∣∣V N(x) − V N(y)
∣∣� LV ‖x − y‖

for all h ∈ (0,h∗
1].

Clearly X ⊂ {x: V N(x) � V A
max}.

Theorem 2. Suppose that Assumptions A1–A4 are valid and N is chosen such that N � N∗ . Then, there exist β ∈ K L, θ ∈ K∞ , μ∗ > 0
and for any δ > 0 there exists an h∗ > 0 such that for any x0 ∈ X , and h ∈ (0,h∗] the trajectory of the �-step exact discrete-time
system

ξ E
i+1 = F E

�

(
ξ E

i ,vh
(
ξ E

i

)
,w(i)), ξ E

0 = x0, (35)

with the �-step MPC vh and w(i) ∈ W μ∗
� satisfies∥∥ξ E

i

∥∥� β
(‖x0‖, i�τ

)+ θ
(
μ∗)+ δ for all i � 0.

Proof. The proof can follow the same line as that of Theorem 2 in [10] and Theorem III.1 in [32] with small modifications
due to the global character of the statement (in the sense that the whole state space X belongs to the basin of attraction).
Moreover, because of our assumptions of the positive invariance of X , we know that ξ E

k ∈ X , if ξ E
0 = x0 ∈ X . Thus, we give

only a short outline of the proof. Let L f > 0 be the Lipschitz constant of f . Using Assumption A1 and Gronwall’s lemma,
we can show that, there exists an h∗

2 > 0 such that∥∥Φ E(x0,vh(x0),w(0)
)− φA(x0,vh(x0)

)∥∥� γ (h) + Lμ, i = 0,1, . . . , �
i i
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for all x0 ∈ X , w(0) ∈ W μ
� and all h ∈ (0,h∗

2], where, γ (h) = τγ (h) eL f τ�−1
eL f τ −1

and L = τeL f τ eL f τ�−1
eL f τ −1

. Let ν > 0 be an arbi-

trary number. Let σ1 and σ2 be given in Theorem 1 and let δ1 = σ−1
2 ( ν

4 ) and L̂ = 2LLV . Let h∗
3 > 0 and μ1 be such that

inequalities

γ (h) < min

{
ν

4LV
,

τ

4LV
ϕ1(δ1),

1

4
δV

}
, μ1 < min

{
τ

L̂
ϕ1(δ1),

3

4L
δV

}
hold true for all h ∈ (0,h∗

3]. Let h∗ = min{h∗
2,h∗

3} and μ∗ = min{μ,μ1} and choose d = L̂μ∗ + ν . Using Theorem 1 and the

definition of d, one can show in the same way as in [10] that if ξ E
k ∈ X and either V N (ξ E

k+1) � d
2 or V N (ξ E

k ) � d hold true,
then

V N
(
ξ E

k+1

)− V N
(
ξ E

k

)
� −τ

4
ϕ1
(∥∥ξ E

k

∥∥). (36)

The construction of a suitable K L function is standard (see e.g. [31]). �
Remark 4. We note that it is not easy to calculate the maximum integration step size h∗ as well as the maximum distur-
bance bound μ∗ given in Theorem 2. Nevertheless, the result is of value, since it underpins that small integration step size
and small additive disturbances can be tolerated.

4. Robust MPC for the HIV model

In this section we apply the robust multirate MPC method proposed in section 3 to the HIV model. We shall show that,
with a suitable choice of N and functions g and lh , the assumptions of the previous section can be satisfied. Introduce new
variables by the definition z1 = T − T0, z2 = T1, z3 = T2, z4 = M − M0, z5 = M1, z6 = V . In these new variables the model
(1)–(6) takes the form of (27) with

f (z, u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1 − d1(z1 + T0) − β1(z1 + T0)z6

q1e−u1β1(z1 + T0)z6 − k1z2 − μ1z2

q2e−u1β1(z1 + T0)z6 + k1z2 − μ2z3

s2 − d2(z4 + M0) − β2(z4 + M0)z6

qMβ2e−u1(z4 + M0)z6 − δz5

e−u2 p1z3 + e−u2 p2z5 − cz6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (37)

and w = (w1, w2, w3, w4, w5, w6)
′.

Let the compact set X be defined as

X = {z ∈ R
6: −T0 � z1 � L1 − T0, 0 � z2, z3 � L1, −M0 � z4 � L2 − M0, 0 � z5 � L2, 0 � z6 � L3

}
,

where L1, L2 and L3 are as in Proposition 1.
With this definition, f satisfies all regularity assumptions, and according to Proposition 1, X is positively invariant if

q1 + q2 � 1 and qM � 1. In what follows, we assume that q1 + q2 � 1 and qM � 1. Since the drug doses cannot be arbitrarily
increased we can consider a compact control constraint set. The disturbance vector w is assumed to be bounded in a
compact set containing the origin.

We note that, when applying the receding horizon algorithm, the cost function Jτ ,h is redefined at each sampling in-
stant, thus the applied control doesn’t minimize it over any interval. The optimization of this cost is not the aim of the
computations but it serves only as an aid for finding the desired stabilizing controller. Therefore the biological content
doesn’t play any role in its choice. Caetano and Yoneyama [6] proposed a cost function which has a biological meaning, but
it is not suitable for our MPC approach. In the receding horizon control literature, there are several strategies for choosing
the design parameters to satisfy stability conditions (see [8,14] and [18]). We call design parameters the data present in the
open-loop optimal control problem that we are able to choose; these are the control horizon N , the running and terminal
costs functions lh and g and the terminal set Gη . In what follows we show that under appropriate choice of the design
parameters, the stability conditions can be verified.

To verify Assumptions A3 and A4, we linearized the nominal system (37) around the origin in case of constant controllers,
i.e., u1(t) = u1 > u(1)

c , u2(t) = u2 > u(2)
c with u(1)

c + u(2)
c = uc , where uc is given in Proposition 4. Let AC be the coefficient

matrix of the linearized system and x = (T − T0, T1, T2, M − M0, M1, V )′ . Then the discrete-time model for the linearized
system is given by:

x(k + 1) = e AC τ x(k). (38)

Let the sampling period be chosen to be τ = 1 and, u1 = u2 = 2. The running cost and the terminal cost can be chosen
as:
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Table 1
The values of the parameters in the HIV model and the system states at the initiation of the therapy.

Parameter Value Variable Value

s1 104 mL−1day−1 T 4.0385 × 105 mL−1

d1 0.01 day−1 T 1 8.5 × 102 mL−1

β1 4.5 × 10−8 mL day−1 T 2 6.6 × 103 mL−1

q1 0.005 M 1.398 × 104 mL−1

q2 0.55 M1 1.61 × 103 mL−1

μ1 0.01 day−1 V 3.2798 × 105 mL−1

k1 0.025 day−1

μ2 0.5 day−1

p1 240 cell−1day−1

c 5 day−1

β2 1.75 × 10−8 mL day−1

δ 0.05 day−1

p2 35 cell−1day−1

qM 1

s2 150 mL−1day−1

d2 0.005 day−1

lh(x, u) = α1x′ Q x + α2
(
u1 − u(1)

c
)2 + α3

(
u2 − u(2)

c
)2

, (39)

g(x) = x′ P x, (40)

where αi are positive weighting constants, P is a positive definite diagonal matrix and Q is a positive definite symmetric
matrix satisfying the Lyapunov equation for the discrete-time system (38)

Q = −(A′
τ P Aτ − P

)
, Aτ = e AC τ .

From (39)–(40), Assumption A3 is satisfied. Assumption A2 follows from Proposition 4 and Assumption A1 holds also true
if we choose a suitable numerical integration scheme (e.g. the Runge–Kutta formula). To verify Assumption A4, the weights
αi and the matrix P have been chosen through a series of numerical experiments as α1 = 0.01, α2 = 1000, α3 = 2000 and
P = diag(0.001,1,1,0.01,0.1,0.001). It has been verified numerically by solving a constrained minimization problem with
several starting points that Assumption A4 is satisfied over the whole set X . Thus all Assumptions of the proposed method
can be satisfied with suitable choice of the parameters of the MPC method. We note that by adjusting the weights αi as
well as the matix P , the performance of the MPC can be fine-tuned. Similar case has been discussed in [39], therefore it
will not be presented in our paper.

5. Numerical results

We perform simulation studies using the parameter values taken from [24,36,7,3]. These values are listed in Table 1.
According to the suggestion in [21], we assume that the system is in the infected steady state before initiating the

treatment i.e. E1|(u1=u2=0) = (T , T 1, T 2, M, M1, V ), see Table 1.
We assume that the state measurements are performed at the instants j�τ , j = 0,1, . . . . All computations are carried

out by MATLAB. In particular, the optimal control sequence is computed by the fmincon code of the Optimization toolbox.
To reduce the computational complexity we chose horizon length N to be N = 8 and � = 4. The disturbances are simulated
by wi(t) ∈ [ηi, εi],

wi(t) = wi( j) = ηi + (εi − ηi)r( j), t ∈ [ jτ , ( j + 1)τ
)
, i = 1, . . . ,6, j = 0,1, . . . ,

where the parameters r( j) are uniformly distributed random numbers on [0,1], and ηi = −εi when the system states lie in
the interior of the positive orthant R

6+ . At the boundary of R
6+ , the lower bound ηi has to be chosen as the following:

η1 = max{−s1,−ε1},
η2 = max

{−q1e−u1β1(z1 + T0)z6,−ε2
}
,

η3 = max
{−q2e−u1β1(z1 + T0)z6 − k1z2,−ε3

}
,

η4 = max{−s2,−ε4},
η5 = max

{−qMβ2e−u1(z4 + M0)z6,−ε5
}
,

η6 = max
{−e−u2 p1z3 − e−u2 p2z5,−ε6

}
,

to guarantee that the positive orthant R
6+ is positively invariant.
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Fig. 1. The evolution of uninfected CD4+ T cells under robust MPC for cases (I)–(III).

Fig. 2. The evolution of latently infected CD4+ T cells under robust MPC for cases (I)–(III).

Simulations for the continuous-time system are carried out using ode45 program in MATLAB for three cases:

(I) wi(t) = 0;
(II) ε1 = 2000, ε2 = 10, ε3 = 1, ε4 = 100, ε5 = 1, ε6 = 5;

(III) ε1 = 4000, ε2 = 20, ε3 = 2, ε4 = 200, ε5 = 2, ε6 = 10.

Figs. 1–6 show the evolution of the HIV model variables under the application of multirate MPC strategy for the cases
(I)–(III). Figs. 1 and 4 show that, when the MPC is applied, the number of uninfected CD4+ T cells is increasing as well
as the macrophages but with a slower rate than CD4+ T cells. This means that, the HAART helps the immune system to
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Fig. 3. The evolution of actively infected CD4+ T cells under robust MPC for cases (I)–(III).

Fig. 4. The evolution of uninfected macrophages under robust MPC for cases (I)–(III).

recover with some fluctuations due to the presence of disturbances. From Fig. 3 and 5, we can see that the number of
latently infected CD4+ T cells, actively infected CD4+ T cells, and infected macrophages are decaying during the treatment.
Fig. 6 shows that, after initiation of HAART, the viral load drops quickly and it can be kept under a suitable level, with
a small controller, corresponding to rather mild dosage of HAART. The model predictive controller as a function of the
time for case (II) is shown in Fig. 7. It is observed that, the treatment is initiated with a stronger dosage of HAART, and
sequentially decreasing over time. Thus we can say that, when the multirate MPC strategy is applied in the presence of
bounded disturbances, the trajectory of the system tends to a ball around the uninfected steady state E0 and remains
there (i.e., practical stability). We observe that, for the disturbance-free (I), the size of the ball is very small due to small
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Fig. 5. The evolution of infected macrophages under robust MPC for cases (I)–(III).

Fig. 6. The evolution of free viruses under robust MPC for cases (I)–(III).

numerical errors. For cases (II) and (III), the size of the ball becomes larger and larger by increasing the bounds of the
disturbances.

6. Conclusion

The basic properties of the 6-dimensional HIV model incorporating to allow some additive disturbances were studied.
The stabilizing property of multirate MPC for nonlinear systems with additive disturbances via approximate discrete-time
model of the nominal system was proved. Highly Active AntiRetroviral Therapy (HAART) is used. The control input is de-
fined to be dependent on the drug dose and drug efficiency. The proposed MPC method is applied for determining HAART
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Fig. 7. Robust MPC for case (II).

schedules and stabilizing the HIV system around the uninfected steady state. The results of simulations show that the
proposed method can effectively be applied to eliminate some drawbacks of the approaches previously published in the
literature.
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[31] D. Nešić, A.R. Teel, P.V. Kokotović, Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximation, Systems

Control Lett. 38 (4–5) (1999) 259–270.
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