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Abstract: This article treats the robust synchronization problem of a class of nonlinear systems from a con-
trol theoretical point of view. Because of the tremendous complexity of nonlinear systems, the problem is
restricted to chaotic electromechanical devices. The results are discussed in the context of complete syn-
chronization. A new dynamic output feedback is applied to perform synchronization in spite of master/slave
mismatches. The main idea is to construct an augmented dynamical system from the synchronization error
system, which is itself uncertain. The advantage of this method over the existing results is that the syn-
chronization time is explicitly computed. Numerical simulations are provided to verify the operation of the
proposed algorithm.
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NOMENCLATURE

� denotes the set of real numbers

�
n is the n-dimensional real linear space

x� y represents a column vector of Rn, and xT a vector row

�x is the first derivative of real-valued C1 function x�t� � �x1�t�� ����� xn�t��T

A�B�N�X are matrices

AT is the transpose of the matrix A
Ai j and A�i j are elements of A and A�1, respectively

s and t are real scalars
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1. INTRODUCTION

The study of the synchronization problem for chaotic oscillators has been very important
from the point of view of nonlinear science, with applications in biology, medicine, cryptog-
raphy, secure data transmission and elsewhere (Pecora and Caroll, 1990� Lakshamanam and
Murali, 1996� Chen and Dong, 1998� Bocaletti et al., 2002� Andrievskii and Fradkov, 2003,
2004). The idea of synchronization is to use the output of the master system to control the
slave system, so that the output of the slave system follows the output of the master system
asymptotically. In general, synchronization research has been focused on two areas, related
to either state observers or control laws. The main applications of state observers lie in the
synchronization of nonlinear oscillators with the same model structure and order, but differ-
ent initial conditions and/or parameters (Morgul and Solak, 1996� Grassi and Mascolo, 1997�
Nijmeijer and Mareels, 1997, Feki, 2003� Liao and Tsai, 2000� Bowong et al., 2004). The
use of control laws, on the other hand, allows us to achieve synchronization between nonlin-
ear oscillators, with different structures and order, with the state variables of the slave system
being forced to follow the trajectories of the master system. This approach can be seen as a
tracking problem (Gonzalez et al., 1999� Femat et al., 1999� Muraly, 2000� Bowong, 2004�
Moukam Kakmeni et al., 2004)� some authors design the controller based on the dynamic
of the synchronization error, because this approach allows the transformation of the tracking
problem to a regulation problem with the origin (zero) as the corresponding set point (Femat
and Solis-Peralez, 1999).

Several other control approaches have been tried, using neural-network, fuzzy, adaptive,
and sliding and other techniques (Bowong, 2004). Other traditional control methods (Ott
et al., 1990) consider the introduction of an additive feedback controller, to force the sys-
tem to reach the desired reference (set point), i.e.,

��x�t�� xps�t�
�� � 0��x�t� as t � �.

These methodologies are based on the cancellation of the nonlinear terms of the chaotic sys-
tems, in order to impose a desired behavior. Under this philosophy, nonlinear differential
geometric control techniques have been successfully employed (Isidori, 1989� Nijmeijer and
Van der Shaft, 1990). They correspond to systems that can be fully or partially linearized
by a change of coordinates and/or state feedback following differential-geometric concepts
(Gonzalez et al., 1999). This type of nonlinear systems can be linearized by a state feed-
back control, which, assuming perfect knowledge of the mathematical model, cancels all the
nonlinearities, producing global asymptotic stability (Femat et al., 1999). A drawback of
exact linearization techniques and other model based controllers is that they rely on exact
cancellation of nonlinearities.

In practice, exact knowledge of the system dynamics is not possible. A more realis-
tic situation is to know some nominal functions of the corresponding nonlinearities, which
are employed in the control design. However, the use of nominal model nonlinearities can
lead to performance degradation and even closed-loop instability. In fact, when the systems
possess strong nonlinearities, the standard linearizing, generic model, and active controllers
cannot cancel completely such nonlinearities, and instabilities can be induced. The worst
case occurs if knowledge of the nonlinearities is very poor or completely absent, such that
conventional linearizing techniques are inadequate. To avoid these problems, the geomet-
ric approach for the design of nonlinear controllers based on uncertainty observers has been
employed, and these kinds of techniques show satisfactory capabilities for a wide range of
systems (Aguilar et al., 2002� Aguilar-Lopez and Alvarez-Ramirez, 2002). The use of pro-
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portional observers coupled with linearizing controllers has been very successful, but the
proportional observers have several problems. Notably, they are very sensitive to noisy mea-
surements, and robustness issues have not been completely addressed. For these reasons,
more sophisticated observers have been designed, in order to generate better open-loop and
closed-loop performances. PI, sliding-mode, and numeric observers have been developed,
along with other types (Martinez-Guerra et al., 2004� Aguilar et al., 2001).

However, despite the large amount of theoretical and experimental results already ob-
tained, a great deal of effort is still required to determine the optimal parameters, in order to
shorten the synchronization time (Woafo and Kreankel, 2002� Chembo and Woafo, 2002),
define the synchronization threshold parameters (Pyragas, 1998), and avoid loss of synchro-
nization and instability during the synchronization process (Osipov et al., 1997). This prob-
lem is important in all fields where synchronization has or may gain practical interest. For
instance, if we consider the application of synchronization in secure communications, the
range of synchronization time during which the chaotic oscillators are not synchronized is
the period during which the encoded message cannot be recovered or sent. Not merely an
irreversible loss of information, this is a catastrophe in digital communications, since the
first bits of standardized bit strings always contain signalization data or the identity card of
the message. Hence, it is clear that the synchronization time must be minimized, so that the
chaotic transmitted oscillators synchronize as fast as possible. In this context, it is fair to say
that there a need for study of this problem.

The purpose of this work is to make a novel contribution to robust synchronization of
a class of continuous-time systems. Because of the tremendous complexity of nonlinear
systems, the problem is restricted to chaotic electromechanical devices, which are widely
encountered in electromechanical engineering� for instance (in its linear version) electrody-
namic loudspeakers. Previously, Woafo et al. (2005) investigated the problem of the chaotic
behavior of a class of electromechanical systems. They found that chaos can arise following
a period-doubling bifurcation cascade or an invariant torus bifurcation series.

In this article, based on a rigorous mathematical analysis and use of the Lyapunov Direct
Method, an adaptive feedback controller is designed such that two coupled chaotic electro-
mechanical systems with uncertainties can be synchronized. The source of such uncertain-
ties could be modelling errors, parametric mismatching, or external disturbances. The pro-
posed strategy is an input-output control scheme comprising an uncertainty estimator and a
linearizer-like feedback. The robust controller is designed by means of the following proce-
dure:

i) the uncertainties are lumped in a nonlinear function
ii) the lumped nonlinear function is interpreted as an augmented state, in such a way that

the extended system is dynamically equivalent to the original system
iii) in order to obtain an estimate of the augmented state, a state estimator is designed for

the extended system
iv) the estimated value of the uncertainties is provided for the control law (via the estimated

value of the augmented state).

Our stability analysis provides an easy and explicit procedure for computing the synchro-
nization time, which depends on the initial conditions and two suitable positive parameters.
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Figure 1. Schematic of the multi-function electromechanical system.

More importantly, we show how the parameters of the feedback control law affect the conver-
gence rate of the synchronization error. The robustness of the feedback control law against
model uncertainties in the actuator is shown using numerical simulations.

We hope that the methodology developed for this specific chaotic system will be ap-
plicable to other types of chaotic systems such as the Rossler system, Chua’s circuit, Lorenz
systems and many other types of chaotic system. We think that the technique developed
in this work provides a strong tool for control theory and is full of promise, as it could
be applied to a great range of problems: Stabilization, implementation, observers, adaptive
synchronization, etc.

2. PRELIMINARIES

2.1. System Description

The electromechanical system, as described by Woafo et al. (2005), is schematically repre-
sented in Figure 1. It consists of an electrical part coupled magnetically to a mechanical part
governed by n linear mechanical oscillators. The coupling between the two parts is realized
by the electromechanical force of a permanent magnet. The electrical part of the system
consists of a resistor R, an inductor L, a capacitor C with nonlinear characteristics (Woafo
et al., 2005) and a sinusoidal voltage source, all connected in series, while the mechanical
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part is composed of n mobile beams which can move respectively along the �xi �i � 1� ���� n�
axis on both sides. The rods Ti are bound to mobile beams with springs of constants ki . The
motion of the entire electromechanical system is governed by n	1 nondimensional coupled
nonlinear differential equations of the form


x 	 � �x 	 x 	 �x3 	
n�

i�1

�i �xi � E0 cos�t�


xi 	 � i �xi 	 �2
i xi 	 �i1 �x � 0� i � 1� ���� n� (1)

where the overdot denotes differentiation with respect to time. The electrical part (Dung
electrical oscillator) is represented by the variable x, while xi denote the mechanical parts
(the n linear mechanical oscillators). x denotes the instantaneous electrical charge of the
capacitor, and xi the displacements of the ith mobile beam. � and � i are, respectively, the
damping coefficients of the Dung electrical part and of the ith linear mechanical part. The
quantities �i and �i 1 are the coupling coefficients, � is the nonlinear coefficient, and �i is the
natural frequency of the ith oscillator. E0 and � are the amplitude and frequency, respectively,
of the external excitation (sinusoidal voltage source).

The model shown in Figure 1 is widely encountered in electromechanical engineering. In
particular, in its linear version, it describes the electrodynamic loudspeaker (Olson, 1967). In
this case, the sinusoidal signal e�t� represents an incoming pure message. Because of recent
advances in the theory of nonlinear phenomena, it is interesting to consider such an elec-
trodynamic system containing one or more nonlinear components, or in the state where one
or several of its components react nonlinearly. One such state occurs in the electrodynamic
loudspeaker, due to the nonlinear character of the diaphragm suspension system, resulting
in signal distortion and subharmonic generation (Olson, 1967). Moreover, the model can
serve as a servo-command mechanism, which can be used for a range of purposes. Here,
one would like to take advantage of the nonlinear responses of the model in manufacturing
processes.

2.2. Problem Formulation

In order to observe the synchronization behavior in the electromechanical system, we assume
that the master system is given by system (1) and the slave is described by


y 	 � �y 	 y 	 �y3 	
n�

i�1

�i �yi � E0 cos�t 	 u�


yi 	 � i �yi 	 �2
i yi 	 �i1 �y � 0� i � 1� 2� ���� n� (2)

where we have introduced the control input u � R. The control input u is to be determined,
for the purpose of synchronizing two identical coupled electromechanical systems with the
same parameters in spite of the difference in initial conditions. Without loss of generality,
we will assume, in what follows, that all parameters of both the master and slave electro-
mechanical systems are positive.
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For further analysis of stability and synchronization, we define the state error vector
between the master and slave electromechanical systems as e � y � x , �e � �y � �x and
�ei � �yi � �xi �i � 1� ���� n�. Using equations (1) and (2), the error dynamics can be described
by


e 	 � �e 	 e	 �e3 	 3�ex�e 	 x�	
n�

i�1

�i �ei � u


ei 	 � i �ei 	 �2
i ei 	 �i1 �e � 0� i � 1� 2� ���� n� (3)

Remark 1. System (3) is minimum phase with respect to e � 0� that is, the second equation
of system (3) is uniformly exponentially stable about �e � 0. In fact, when �e � 0, the zero
dynamics are given by


ei 	 � i �ei 	 �2
i ei � 0 i � 1� ���� n� (4)

In order to show the convergence to zero of the above system, we can define the function

V � �ei � ei� � 1

2

n�
i�1

� �e2
i 	 �2

i e2
i

�
(5)

as a candidate Lyapunov function. Its time derivative along (4) satisfies

V � �ei � ei� � �
n�

i�1

� i �e2
i  0

which implies that V � �ei � ei� is semi-definite negative because � i 	 0. Furthermore, it fol-
lows from the LaSalle invariance principle (LaSalle and Letschetz, 1961) that the largest
invariant set contained in E � ��ei � �ei� � �2n , �V � �ei � ei� � 0� is the manifold �ei � 0. Ac-
cording to system (4), �ei � 0 implies that ei � 0. Therefore, the origin is the largest invariant
set contained in E. Since ei � �ei � 0, one can conclude that the synchronization error states
�ei�t�, �ei�t�� remain at zero for all t � t0 � 0, since the manifold �ei � �ei� � 0 is the largest
invariant set of �2n. This implies that when �ei � 0, lim

t�� ei�t� � 0 and lim
t�� �ei�t� � 0.

Thus, when we have taken action to achieve lim
t�� ei�t�� 0, the second equation of sys-

tem (3) converges asymptotically to zero for the so-called minimum-phase character. There-
fore, we only consider the first equation of system (3) in what follows.

Now, assume that the outputs of the master and slave systems are, respectively, ym � x
and ys � y. By substituting z1 � e and z2 � �e, the first equation of system (3) can be
rewritten as

�z1 � z2

�z2 � 
�z� x� �ei�	 u

yz � z1 (6)
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where z � �z1z2�
T , yz is the error system output and 
�z� x� �ei� � �� z2 � z1 � �z3

1 �
3�z1x�z1 	 x��

n�
i�1
�i �ei .

The synchronization problem can be stated as follows: given the transmitted signal ym

and least prior information about the structure of the nonlinear filter, system (1), to design a
receiver signal u such that

z�t� � 0 for all Ts � 0 (7)

where Ts is the synchronization time.
To describe the new design and analysis, two hypotheses are needed.

H1: Only the system output yz � z1 is available for feedback.
H2: The function 
(z� x� ei ) is uncertain.

Some comments regarding these are in order. Assumption 1 is realistic. For instance,
in the case of secure communications, only the transmitted signal and receiver signal are
available for feedback from measurements. Another example of the problem can be found
in neuron synchronization, where master neuron transmits a scalar signal. The slave neuron
tracks the signal of the master neuron. Assumption 2 refers to a general and practical situ-
ation, as the term 
�z� x� ei� involves the uncertainties in the system. Hence, the nonlinear
function 
�z� x� ei� is unknown and cannot be used directly in linearizing-type feedback.
These kinds of uncertainties have previously been studied in the context of chaos control
and synchronization by various authors (Gonzalez et al., 1999� Femat et al., 1999� Bowong,
2004�Moukam Kakmeni et al., 2004).

Our proposal for dealing with the uncertain term 
�z� x� ei� in equation (6) is to lump
it into a new state. Thus, let � � 
�z� x� ei�. In this way, system (6) can be rewritten
(Gonzalez et al., 1999� Femat et al., 1999� Bowong, 2004� Moukam Kakmeni et al., 2004)
as the dynamically equivalent extended system

�z1 � z2

�z2 � � 	 u

�� � ��z� �x� �� ei � �ei � u�

yz � z1 (8)

where

��z� �x� �� ei � �ei � u� � z2
�z� x� �ei��z1 	 �� 	 u�
�z� x� �ei��z2 	 �x
�z� x� �ei��x

�
n�

i�1

�� i �ei 	 �2
i ei 	 �i1z2�
�z� x� �e1�� �ei �

With respect to systems (6) and (8), we can say:
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Proposition 1. System (8) is dynamically equivalent to system (6), that is, system (8) has
the same solution as the system (6) module ��z� �� � z.

Proof. It is straightforward to prove that ��z� x� �� �ei� � � � 
�z� x� �ei� is a first integral
of system (8). In order to prove this property, it suffices to show that along the trajectories
of system (8), d��z� x� �� �ei��dt � 0 for all t � 0, or, equivalently z2��z� x� �� �ei��z1 	
�� 	 u���z� x� �� �ei��z2 	 ����z� x� �� �ei��� 	 �x��z� x� �� �ei��dx � �� i �ei 	 �2

i ei 	
�i1z2���z� x� �� �ei�� �ei � 0. This is automatically satisfied, because ��z� x� �� �ei��� �
1 and �� � z2��z� x� �� �ei��z1	��	u���z� x� �� �ei��z2	 �x��z� x� �� �ei��x��� i �ei	
�2

i �ei 	�i1z2���z� x� �� �ei�� �ei . Hence, system (8) is dynamically equivalent to system (6).
This implies that the augmented state � provides the dynamics of the uncertain function

�z� x� �ei�.

For the sake of compactness, we introduce the following afilternative description for
system (8)

�z � Az 	 B�� 	 u�

�� � ��z� �x� �� ei � �ei � u� (9)

where

A �
�

0 1

0 0

�
and B �

�
0

1

�
�

3. A FEEDBACK CONTROL LAW WITH ESTIMATION

OF UNCERTAINTIES

In this section, we propose a physically realizable feedback controller u to attain the syn-
chronization objective stated above, i.e., the stabilization at the origin and in a finite time of
uncertain system (9). The approach developed in this work is able to guarantee robust sta-
bility (in fact, robust synchronization) from incomplete state measurements, and requires no
detailed model of the system. Our approach includes a state/uncertainty observer and gives
a robust feedback control scheme. The expression of the synchronization time is explicitly
computed. Let M��� �� be the matrix

M��� �� �

�						

2
�
�
�

�3

�� 	 1��� 	 2��� 	 3�

�
�
�
�

�
�� 	 1��� 	 2�

�
�
�
�

�
�� 	 1��� 	 2�

�
�
�

�
� 	 1

������� (10)
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where � and � are positive constants. Also, let N ��� be the matrix

N ��� � �

�
�

1
�

1�
0

�1� t��e�
�
� AT �

1
� t

B BT e�
�
� A�

1
� t

dt� (11)

More precisely, we have:

Lemma 1. N ��� is symmetric, positive and definite, and is the solution of the differential
matrix equation

d X

d�
� 1

�
�

1
��1
�
�AT X � X A � �� 1

� X 	 B BT
�
� (12)

This Lemma is proved in Appendix A. Note that N ��� is determined by A and B. Equation
(12) will be useful in proving that the dynamics of the closed-loop system are asymptotically
stable. This is related to the fact that the proposed control scheme is based on the use of
bounded positive functions that are nonincreasing along the solutions of the closed-loop
system. Moreover, we have

N��� �

�						

2
�
�
�
�

1
�

�3

�� 	 1��� 	 2��� 	 3�

�
�
�
�
�

1
�

�
�� 	 1��� 	 2�

�
�
�
�
�

1
�

�
�� 	 1��� 	 2�

�
�
�
�

1
�

�
� 	 1

������� � (13)

However, in Appendix B we prove

Lemma 2. � � ��z� is of class C1 and is the unique positive solution of

�1	 3
� �

2�
i� j�1

�Mi j��� ���
1
� �i	 j�2�zi z j � (14)

where �Mi j��� �� are elements of the inverse matrix of M, which is given by

M�1��� �� �

�							


�� 	 2�2�� 	 3��
�
�

�3

�� 	 2��� 	 3��
�
�

�2

�� 	 2��� 	 3��
�
�

�2

2�� 	 2��
�
�

�

��������
�
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If we now consider the following linearizing-like control law

u � �� � 1

2
BT N�1���z (15)

where N�1��� is the inverse matrix of N ��� which is given by

N�1��� �

�							


�� 	 2�2�� 	 3��
�
�
�

1
�

�3

�� 	 2��� 	 3��
�
�
�

1
�

�2

�� 	 2��� 	 3��
�
�
�

1
�

�2

2�� 	 2��
�
�
�

1
�

�

��������
�

Remark 2. A simple computation can prove that equation (14) can be rewritten as

�1	 3
� �z� � �M11��� ��z

2
1 	 � �M12��� ��	 �M21��� ���

1
� z1z2 	 �M22��� ���

2
� z2

2

� �� 	 2�2�� 	 3�z2
1�

�
�

�3 	 2�� 	 2��� 	 3�z1z2�
�
�

�2 	 2�� 	 2�z2
2�

�
�

� �

With this in mind, we can see that

��z� � �� 	 2�2�� 	 3�z2
1�

�
�
�

1
�

�3 	 2�� 	 2��� 	 3�z1z2�
�
�
�

1
�

�2 	 2�� 	 2�z2
2�

�
�
�

1
�

� � zT N�1���z�

Substitution of the linearizing-like controller (15) into (9) gives

�z �
�

A � 1

2
B BT N�1���

�
z

�� � ��z� �x� �� ei � �ei � u�� (16)

Now, we can establish the following result.

Theorem 1. Let z0 � z�0� be the initial condition of z�t�. If z0 �� 0, � � 1 and � 	 0, then
the synchronization error z�t� converges asymptotically to zero within a f inite time

T8 � �

�
�

1
� �z0� (17)

that is, z�t��� for all t � T8 	 0.
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Without loss of generality, we assume that z�t� is defined in the interval [0� T8] so that
� �� 0 and the matrices N ��� and N�1��� exist. We define the Lyapunov candidate function
as

��z� � zT N�1���z� (18)

Now, consider the function F�z� �� � ��z�� zT N�1���z. From equation (18), we know
that d F � F

�
d� 	 F

z dz � 0, which implies that F �
�
�
z 	 F �

z � 0, where F �
z � F

z �
�2N�1���z and F �

� � F
�
� zT

�
1
�

N�1���� d
d� N�1���

�
z. From this, we can deduce that

�
z � � F �z

F ��
. Thus, the time derivative of (18) along the trajectories of (16) satisfies

���z� �
�
�

z
�

�
A � 1

2
N�1���B BT

�
z

�

� �
�

F �
z

F �
�

�

�
A � 1

2
N�1���B BT

�
z

�

� 1

F �
�

zT
�

AT N�1���	 N�1���AT � N�1���B BT N�1���
�

z (19)

where ��� �� is the inner product. Using equation (12), one may easily prove that

AT N�1���	 N�1���AT � N�1���B BT N�1��� � �� 1
��1

�
d

d�
N�1���� 1

�
N�1���

�
� (20)

Finally, we get

���z� � ���1� 1
� �z�� (21)

which is negative definite if � � 1 and � 	 0. This means that if � � 1 and � 	 0,
the synchronization error z(t) converges asymptotically to zero. Since � is a continuous
function, one can easily prove (by applying the LaSalle invariance principle) that the origin
is the largest invariant set contained in � � �z � �2� ���z� � 0�. Thus, the synchronization
error remains at zero for all t � t0 � 0.

The convergence of ��t� to zero follows from the fact that the closed-loop system is in
cascade form. Since 
�z� x� �ei� is smooth, the control dynamics is given by

�u � ���z� �x� �� ei � �ei � u�� 1

2
BT �� 

�
N�1���� 1

2
BT N�1����z�

Since ��z� �x� �� ei � �ei � u� is a smooth function, �u is also a smooth function. Conse-
quently,��z� x� �� �ei� is a first-integral of the closed-loop system. Then, from equation (15),
the augmented state becomes � � �u � 1

2 BT N�1���z. Hence, the augmented state � is
bounded, and its dynamics are also bounded. Finally, since z�t� asymptotically converges
to zero, ��t� also asymptotically converges to zero. This guarantees the convergence to the
origin of closed-loop system (16).
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To compute the synchronization time, we have to follow the time trajectory of closed-
loop system (16). In this case, synchronization is achieved when z�t� is zero for all t � Ts �
0. If we integrate equation (21), we get �

1
� � 1

�
���t 	 c� where c is an integration constant.

Since z0 � 0, ��z0� � 0, and one can deduce that c � ��
1
� �z0�. With this in mind, and

using the fact that ��z� � 0 at t � Ts , one may easily prove that the synchronization time is
defined as in equation (17). This completes the proof.

Remark 3. Given the feedback parameters á and �, it is not immediately apparent how one
chooses the function � so that synchronization objective (7) is satisfied. Furthermore, it is not
easy to determine the solutions of equation (14) analytically. Fortunately, this equation can be
solved numerically. Since error system (3) is minimum phase, the state ei , i � 1� ���� n, will
converge to the origin, although in an arbitrary time. However, it is clear that its convergence
rate will also depend on the feedback parameters � and �. Determining the quantitative
relation between the convergence rate of the states z and ei , i � 1� ���� n� requires further
work, however.

Nevertheless, the linearizing-like feedback (15) is not physically realizable, as it requires
perfect knowledge of the nonlinear term 
�z� x� �ei�. Because of the two assumptions made,
this feedback must be modified in such a way as to include consideration of modelling errors
and parameter perturbations. We therefore use the estimation of
�z� x� �ei� in such a way that
the main characteristics of the linearizing-like feedback (15) are retained. As was established
by Jiang and Praly (1998), the problem of estimating �z� �� can be addressed by using a
high-gain observer. Thus, we are interested in a dynamical output feedback of the form

��z1 � �z2 	 �k1�z1 � �z1�

��z2 � �� 	 �2k2�z1 � �z1�	 u

��� � �3k3�z1 � �z1� (22)

u��z� � Sat

���� ��� � �� 	 2��� 	 3��z1

2
�
�
�
��

1
�

�2 � �� 	 2��z2

�
�
�

1
�

!�"�# (23)

where �z1, �z2 and �� are the estimated values of z1, z2 and �, respectively, and � 	 0 is the
high-gain parameter, which can be interpreted as the uncertainty estimation rate, and can
often be chosen as a constant (Femat et al., 1999), and

Sat ��� �

���������� 
� umax if u 	 umax

� ��� � 1
2 BT N�1����z if �umax  u  umax

� �umax if u � �umax

� is the unique positive solution of the equation
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�
�	3
� � 2�

�
�� 	 2��z2

2�
2
� 	 2�2

�2
�� 	 2��� 	 1��z1 �z2�

1
� 	 �

3

�3
�� 	 2�2�� 	 3��z2

1� (24)

The estimation constants ki , i � 1� 2� 3, are chosen in such a way that the polynomial
s3 	 k3s2 	 k2s 	 k1 � 0 has all its roots located in the open left-hand complex plane. Now,
we can demonstrate the following

Theorem 2. Let �z0 � �z�0� be the initial condition of �z�t�. If �z�0� �� 0, � � 1 and � 	 0,
then the synchronization error z(t) converges asymptotically to zero at a f inite time

T8 � �

�
�

1
� ��z0� (25)

Proof. Let �e � �3 be an estimation error vector whose components are defined as follows:
�ei � �2�i�zi �zi�, for i � 1� 2, and �e3 � �� ��. Substitution of robust feedback controller (23)
and the dynamics of the above defined estimation error into (9) yields

�z � ��z� �e� �� u�
�� � ��z� �e� �x� �� ei � �ei � u�

��e � �D �e 	 B ���z� �e� �x� �� ei � �ei � u� (26)

where ��z� �e� �� u� � Az 	 B�� 	 u� with u � u�zi � � i�2 �ei � � � �e3�,

D �

$%%&
�k1 1 0

�k2 0 1

�k3 0 0

'(() and B � �

$%%&
0

0

1

'(() �
Since the saturation function is a bounded function, there exists a continuous function � ���e��
such that ���z� �e� �� u��  � ���e��. In addition, since � � 
�z� x� �ei� and u � Sat����
� 1

2 BT N�1����z�, one can obtain the contraction � � Z�z� �e� �x� �� ei � �ei � u� (which can be
computed from the first integral of the second equation of system (26), i.e., � � * ��z� �e� �x�
�� ei � �ei � u�d� . Then, according to the Contraction Mapping Theorem, the state � can be
expressed globally and uniquely as a function of the coordinates �z� �e�.

On the other hand, since the matrix D is of Hurwitz construction, the nominal system
��e � �D �e is quadratically stable. This implies that the Lyapunov equation DT P	P D � �I3

(where I3 is the identity matrix of dimension 3) has a positive definite solution P. Since the
nonlinear function ��z� �e� �x� �� ei � �ei � u� is bounded, the last equation of (26) is quadratically
stable.

From this, and the boundedness of ��z� �e� �� u�, one can conclude that, given a compact
set of initial conditions �0 � �

3 containing the origin, there exists an upper bound umax,
with �Sat ����  umax and a high-gain estimation � such that �0 is contained in the attraction
basin �S � �S0 of system (26). Hence, system (26) is semi-globally practically stable, i.e.,



544 S. BOWONG and X. XIA

Figure 2. Phase portraits of the electromechanical system showing the chaotic orbit.

�z� �� � �0� 0�. Then, since the solution of (8) is the projection of system (6), one can
conclude that z�t� � 0, via module ��z� ��, where �z� �� is the projection of system (8)
into system (6) for all t � 0. Therefore, z�t�� 0 as t � Ts .

4. NUMERICAL SIMULATIONS

In order to validate the performance of the proposed control law, we will show a series of
numerical experiments to demonstrate its effectiveness.

Without loss of generality, we consider the case where n � 2. For some parameters such
as � � 0�1, � 1 � 0�3, � 2 � 0�23, �1 � 0�01, �2 � 0�02, �11 � 0�06, �21�0�04, �1 � 1�2,
�2 � 1�3, � � 1�4, � � 2�32 and E0 � 20, the nonlinear electromechanical system has a
chaotic solution (Woafo et al., 2005) as shown in Figure 2. The initial states are at the origin
in each part.
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The initial conditions for ��z1� �z2� ��� were �1� 0��2�5�, so that

���z0� �
�
�3

�3
�� 	 2�2�� 	 3�

� �
��	3�

�

Hence, the synchronization time (25) can be expressed as:

T8 � 1

� �
��	3�

�
���� 	 2�2�� 	 3�

� 1
��	3� � (27)

Remark 4. The �, �-parameterization of feedback coupling (23) provides a simple tuning
procedure. From the above equation, one can see that for fixed �, if � increases, then �

1
� �z0�

decreases such that ��
1
� �z0� increases. This means that the synchronization time Ts increases

with �. Similarly, if � increases while � is fixed, synchronization time Ts decreases. It is
thus easy to see how the synchronization time can be minimized. This is of great practical
interest, since the synchronization process can be affected as fast as desired, depending on
the feedback parameters � and �.

It should be pointed out that the value of � is obtained via numerical simulations. The
high gain parameter is set to � � 30 and umax � 20. The estimation constants [k1� k2� k3] are
[3� 3� 1], so that the eigenvalues of matrix D are located at �1.

Figure 3 shows the synchronization of the master and slave electromechanical systems
performed with � � � � 1. Note that in this case, the analytical value of the synchronization
is about 2.445 s. From this figure, it is clear that the synchronization error is stabilized at
the origin by output-feedback controller (23) in spite of the fact that the master and slave
systems have different initial conditions. From Figures 3a and 3b, one can see that a fairly
good convergence of z � R2 is obtained in about 2.4 s, which corresponds well with the
analytical value of the synchronization time. One important feature is that although the
control input is acting only on the states z � R2, �ei � �ei� � �4, i � 1� 2, is also stabilized at
the origin.

Figure 4 shows the performance of output feedback controller (23). Figure 4a shows
the current term ��t� (solid line) and the estimated term ���t� (dashed line). After a short
transient, i evolves very similarly to �. Such behavior is attained because of the fact the
control signal converges exactly to zero. This can be seen in Figure 4b.

Providing further evidence of the effectiveness and efficiency of the proposed synchro-
nization algorithm, we have checked the validity of the analytical results by comparing the
values given by equation (27) to those obtained from the numerical simulation. We consider
that the synchronization is achieved when the synchronization error is less than a precision
or tolerance. Using the equation

�z�t��  h (28)

where h � 10�4 is the synchronization precision or tolerance for computing numerical values
of the synchronization time. Figures 5a and 5b show, respectively, the synchronization time
as a function of � when � � 1 and as a function of � when � � 1. The agreement between
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Figure 3. Time evolution of the synchronization error. (a) z1�t� � x�t�� y�t�, (b) z2�t� � �x�t�� �y�t�, (c)
e1�t� � x1�t�� y1�t�, (d) �e1�t� � �x1�t�� �y1�t�, (e) e2�t� � x2�t�� y2�t� and (f) �e2�t� � �x2�t�� �y2�t�.

the analytical (lines) and numerical (lines with stars) results is good. As predicted by the
analysis of Remark 2, one can see that the synchronization time decreases exponentially
when � increases (Figure 5a), while the synchronization time increases with the feedback
parameter � (Figure 5b).



NONLINEAR SYSTEMS: APPLICATIONS TO CHAOTIC COUPLED 547

Figure 4. (a) Evolution of the current value of � (solid line) and its estimated value �� (dotted line) and (b)
time evolution of the control signal.

Figure 5. Synchronization time Ts : numerical results (lines with stars) and analytical results (lines). (a)
As a function of � when � � 1. (b) As a function of � when � � 1.

5. CONCLUSIONS

In this article, a robust synchronization scheme of a class of nonlinear systems was pre-
sented from the control theoretical point of view. The problem has been restricted to chaotic
electromechanical devices. The synchronization problem was addressed as one of stabiliza-
tion at the origin of the synchronization error. The mathematical stability conditions are
derived from the Lyapunov stability theory. A robust adaptive feedback system is developed,
such that two electromechanical chaotic systems can be synchronized. A state observer is
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used to estimate the systems’ uncertainties, and the unmeasurable states, based on the mea-
surable synchronization error. The feedback controller then becomes physically realizable,
based on the states of the observer, and can be used to synchronize two electromechanical
chaotic systems. An explicit expression of the synchronization time was given in terms of
two parameters from which an arbitrary convergence rate of the synchronization error can be
prescribed. Simulation results demonstrate that the proposed strategy is able to achieve the
synchronization of two electromechanical chaotic systems.

APPENDIX A: PROOF LEMMA 1

In this appendix, we prove that the matrix N ��� is symmetric and positive definite. Using
� � ��1� t��, matrix (11) can be expressed as

N��� � 1

�
e�

�
� A�

1
�

� �

0

�

�
e
�
� A�

1
� B BT e

�
� AT �

1
� d�e�

�
� AT �

1
� (29)

which is a symmetric matrix. Now, suppose that for � 	 0, there exists a vector X0 �� 0 such
that �N ���X0� X0� � 0. Then, from equation (29), one can show that� �

0

���� 1
2� BT e�

�
� A��

1
� �� 1

� �X0

���2

d� � 0� for all � � [0� �] (30)

which implies that

BT e�
�
� AT ��

1
� �� 1

� �X0 � 0� for all � � [0� �] � (31)

Computing the n � 1 derivatives of the above equation with respect to � and setting � � 0,
we get

BT X0� BT AT X0� BT �AT �2 X0� ���� BT �AT �n�1 B X0 � 0� (32)

This leads to a contradiction, since the pair �A� B� is controllable, and one can conclude that
N(�) is positive definite.

APPENDIX B: PROOF LEMMA 2

Here, we prove that ��z� is a C1 function, and is the unique solution of equation (14).
First, we establish that ��z� is the unique solution of equation (11). Consider the func-

tion

F�z� �� � � � �N�1���z� z
�
� (33)
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Its derivative with respect to � satisfies

F�z� ��

�
� 1	

�
N�1 d N ���

d�
N�1���z� z

�
� (34)

On the other hand, from equation (11), one can deduce inductively that

d N ���

d�
� 1

�
�
�1	 1

�

� �
� �

1
�

0

+
1� s

�
�
�

1
�

,��1

se�As B BT eAT sds 	 0� (35)

From this observation one can easily prove, as shown in Appendix A, that d N���
d� is positive

definite. We now know that �F�z� ����� 	 1. As a consequence, for large enough � ,
F�z� �� 	 0 and F�z� ��must be a strict increasing function with respect to � . On the other
hand, since N��� is symmetric and positive definite, N1��� is also symmetric and positive
definite. With this in mind, one has

�
N�1���z� z

� � �z� z�
�N ���� � (36)

Using equation (11), it is now clear that N���� 0 when � � 0. Thus, for sufficiently small
� , one can deduce that

F�z� ��  � � �z� z�
�N���� � 0� (37)

Thus, since ��z� is a continuous function, one can conclude that the equation � ��
N�1���z� z

�
admits a unique positive solution ��z�.

Now, we will prove that ��z� is a C1 function. Since �F�z� ����� 	 1 for all z ��
0, one can, by applying the implicit function theorem, deduce that ��z� is the solution of
F�z� �� � 0 and of class C1 in the neighborhood of z �� 0. Now, we prove that ��z� � � for
all z � �s0 with

� 	 �����2
0� �0 	 0 (38)

and �s0 � �� �2� �z� � �0�
Suppose that ��z� � � for z � �s0. On the one hand, since for z �� 0, the function�

N�1���z� z
�

is always decreasing with respect to � , the function
��N�1���

�� is also a de-
creasing function. Thus, for all � 	 0 we have��N�1���

��  ���� ��� for all � � ��

With this inequality in mind, we have�
N�1���z� z

�  ��N�1���
�� �z�2  �����2

0�
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On the other hand, combining equations (14) and (38), we immediately arrive at the follow-
ing inequality

��z� � � � �����2
0 � ��z��

This leads to a contradiction and we can thus conclude that ��z� � � for z � �s0. The results
follow.
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