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The fault-tolerant control (FTC) of heavy-haul trains is discussed on the basis of the speed regulation
proposed in previous works.The fault modes of trains are assumed and the corresponding fault detection
and isolation (FDI) are studied. The FDI of sensor faults is based on a geometric approach for residual
generators. The FDI of a braking system is based on the observation of the steady-state speed. From the
difference of the steady-state speeds between the fault system and the faultless system, one can get fault
information. Simulation tests were conducted on the suitability of the FDIs and the redesigned speed
regulators. It is shown that the proposed FTC does not explicitly worsen the performance of the
speed regulator in the case of a faultless system, while it obviously improves the performance of the
speed regulator in the case of a faulty system.

Keywords: fault detection and isolation; fault tolerant control; nonlinear system; measurement
feedback; heavy-haul train

1. Introduction

For the control strategies of train handling, various studies have been carried out, such as
in [1–5]. In [1,2], some kinds of open-loop control are proposed while in [3–5], some kinds of
closed-loop control are developed on the basis of state feedback. Recently, a nonlinear system
theory approach, output regulation of nonlinear systems is given in [6] for train handling on
the basis of measurement feedback. In these papers, however, all the controllers are designed
on the assumption that the train is well set up and all the actuators (supplying traction efforts
and braking efforts of locomotives and wagons) and sensors work as designed, which is an
ideal condition. In practice, some of the actuators and/or sensors may be faulty, and even
worse, the train structure may be changed. For example, the speed sensor has a constant bias,
or the amplifier in the sensor circuit has a fault which leads to a gain fault of the sensor. The
locomotive may fail during the operation, which happened in the ECP trial run to collect data
to validate the cascade-mass-point model in [7] on 18 November 2003. In the trial run, one of
the two front locomotives was faulty such that one could not make any effort for a section of the
track. The air pressure in the braking pipe may be different from expected because of a fault in
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706 X. Zhuan and X. Xia

the pressure sensor in the air recharge system or air leakage, which makes the braking forces
acting on the wheels less than expected. When a fault happens, the controller, designed on
the basis of the faultless train model, cannot work as well as expected, and sometimes it even
leads to unsafe running, such as train-breaking and derailment, i.e., the safe running of trains
cannot be guaranteed. Some safe running methods are therefore necessary in train handling.
Actually, in some fault modes of train handling, it is possible to assure train performance with
suitably redesigned controllers.

In nature, the above-mentioned controller redesign is a fault-tolerant control (FTC) problem.
In the literature, there are many papers about such problems. Some survey papers, such as [8–
15], provide excellent reviews on the subject of FTC. For linear systems, geometric approaches
are proposed for fault detection and isolation (FDI), for example, in [16–18]. A combined
input–output and local approach is proposed in [19] for the problem of FDI of nonlinear
systems modelled by polynomial differential-algebraic equations. A high-gain observer-based
approach for FDI of an affine nonlinear system is advanced in [20], where a sufficient condition
is given. In [21], a geometric approach to FDI of nonlinear systems is proposed, while a
necessary condition for the existence of FDI is exploited based on a geometric concept–
unobservability distribution introduced by the authors in [22]. For the solution of FDI, a
sufficient condition is also given. A stability- and performance-vulnerable failure of sensors
can be identified with the approach in [23] for nonlinear systems. The switch between two
robust control strategies based on normal operation and faulty operation is used to realise
FTC. An information-based diagnostic approach is investigated in [24] for a class of SISO
nonlinear system in a triangular structure. In [25], a fault diagnosis approach is proposed based
on adaptive estimation by combining a high-gain observer and a linear adaptive observer. As is
known, the high-gain observer is sensitive to measurement noise. In speed regulation of heavy-
haul trains with measurement (speeds) feedback, noise is inevitable, so a high-gain observer
is not considered in this study. Recently, compared with [21], a relaxed formulation of FDI of
nonlinear systems is proposed in [26], where a residual generator has been designed to detect
a set of faults.

In train handling, such problems have been investigated in [27,28] for some kinds of faults
with induction motors. The FDI of diesel engines are seen in [29,30]. Paper [28] is in essence
on FTC of the induction motor, which can also be seen in [31]. In [32], some brief results
of FTC of heavy-haul trains are shown. In this paper, the FTC of the whole train is stud-
ied for the actuator faults and sensor faults. The faulty modes of a train include the gain
faults of speed sensors, the locomotive actuators (induction motors, in this study), and wagon
actuators (the braking systems). The locomotive fault signal is assumed to be acquired from
other FDIs and is available in its fault-tolerant controller redesign. Based on the train model
and fault modes, a fault-tolerant speed regulator (including the FDI part and FTC part) is
designed for the faults of sensors and braking systems, respectively. The fault-tolerant speed
regulator of sensors’ faults is based on the approach in [21], while the fault-tolerant speed
regulator of the braking system fault is based on the steady-state calculation. With the fault
signals of FDIs, the speed regulator in [6] can be suitably redesigned to maintain the train’s
performance.

In this study, Simulation tests are conducted to show the suitability of the FTC. Simulation
results show that the application of the proposed FTC does not explicitly worsen the perfor-
mance of the speed regulator in the case of a faultless system while it obviously improves the
performance of the speed regulator in the case of a faulty system.

The structure of this paper is as follows: The train model and fault modes are given in
Section 2. Fault detection and isolation are studied in Section 3 while the corresponding FTC
are discussed in Section 4. Simulation results are shown in Section 5. Some conclusions are
made in Section 6.
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Vehicle System Dynamics 707

2. Fault modes of heavy-haul trains

A cascade-mass-point model for a heavy-haul train is shown in Figure 1, and the longitudinal
dynamics are given in [33] as follows:

miv̇i = ui + fini−1 − fini
− fai

, i = 1, . . . , n,

ẋj = vj − vj+1, j = 1, . . . , n − 1,
(1)

where the variable mi is the ith car’s mass, the variables vi, ui are the speed and control effort
(traction force or dynamic braking force for a locomotive and the braking force for a wagon)
of the ith car. The variable fai = faeroi + fpi , i = 1, 2, . . . , n are the forces undertaken by the cars
from the environment, where faeroi

= mi(c0i
+ c1i

vi + c2i
v2

i ) is the ith car’s aerodynamic
force, the variable fpi = fgi + fci is the force due to the track slope and curvature where the ith
car is running. The variable fini is the in-train force between the ith and (i + 1)th cars, which is a
function of xi, the relative displacement between the two neighbouring cars, and the difference
of the neighbouring cars’ velocities (damping effect). The variables c01 , c1i , c2i are constants.
In Equation (1), one has fin0 = finn = 0.

With open-loop scheduling, one can get the equilibria f 0
inj

(x0
j ), v

0
i (vr ), u

0
i , j =

1, 2, . . . , n − 1, i = 1, 2, . . . , n, which are the in-train forces (static displacement of cou-
pler), the speeds (reference speed), and the traction/braking forces. Then a difference system
between the train model and the equilibria is as

δv̇s = (δus + δfins−1 − δfins
− δf as)/ms,

δẋj = δvj − δvj+1, s = 1, . . . , n, j = 1, . . . , n − 1,
(2)

where δvs = vs − v0
s = vs − vr, δus = us − u0

s , δfins
= fins

− f 0
ins

, δxj = xj − x0
j .

The above system can be rewritten as

δv̇ = f11(δv) + A12δx + Bu,

δẋ = A21δv,
(3)

where δv = [δv1, . . . , δvn]T, δx = [δx1, . . . , δxn−1]T, f11(δv) = [f 1
11(δv1), . . . , f

n
11(δvn)]T in

which f i
11(δvi) = (c1i

+ 2c2i
vr )δvi + 2c2i

δv2
i ,

B = diag

(
1

m1
, . . . ,

1

mn

)
,

A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0

kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0
kn−1

mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A21 =

⎡
⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1

⎤
⎥⎥⎦ .
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708 X. Zhuan and X. Xia

Figure 1. The longitudinal dynamics of a heavy-haul train.

The variables ki, i = 1, . . . , n − 1 are chosen to be constant. In the following, one also denotes
A11 = ∂f11(0)/∂δv.

In this study, the fault modes include speed-senor faults and actuator faults.

2.1. Speed-sensor faults

The states of a train include the speeds of cars and the relative displacement of the couplers
(in-train forces). It is very difficult to measure the relative replacements directly; however,
the speeds of the cars could be measured directly when the cars are equipped with speed
sensors. Here analogue tachometers with 4–20 mA output are assumed to be employed for
speed measurement. There is an electric circuit for the data sampling of 4–20 mA current.
The current flows through a resistor with a resistance of 250 �, and the measurement of the
current could be done through the measurement of voltage across the resistor. The electric
circuit for the 4–20 mA signal to be sampled by a controller includes at least an amplifier.
For such a kind of tachometers, the measurement is inevitably influenced by the environment,
such as temperature, moisture, electro-magnetic environment, and so on. Thus the accuracy of
the resistor and the operation of the amplifier will affect the measurement of speed, and even
lead to the gain fault of speed measurement. The gain fault could be negative or positive.

The speed sensor may be faulty with a constant bias, and/or with a gain fault due to the gain
change of the amplifier in the circuit. In the former case, such a fault can be corrected by the
calibration before its application. In this paper, the latter case is considered; that is, the sensor
for the ith car’s speed is faulty with a gain fault,

vi = (1 + mf
vi
)vo

i , (4)

where the variable vi is the sensor output for the ith car’s speed, vo
i is the real speed, and m

f
vi

is the constant gain fault of the sensor.
Assuming there are q sensors equipped for q cars of the train, and they are located at the

positions ls1, . . . , lsq. Then, the dynamics of a train with speed measurement (3) is as follows:

δv̇ = f11(δv) + A12δx + Bu,

δẋ = A21δv,

yi = (1 + mf
vlsi

)vlsi
− vr, i = 1, . . . , q,

(5)

where m
f
vlsi

is a constant gain fault of the ith sensor, and yi is the speed measurement.

2.2. Actuator faults

The actuators of a train include the locomotives’ engines (traction efforts or dynamic braking
forces) and the wagons’ brakes (braking efforts). However, the actuators are sometimes faulty.
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Vehicle System Dynamics 709

For example, one locomotive in a locomotive group (composed of nl locomotives) does not
work, then the actual output of the locomotive group is nl − 1/nl of the expected. The air
pressure in the braking pipe is sometimes different from the designed one owing to air leakage
or a fault of the pressure sensor in the air recharging system, which leads to less braking effort
in the braking system. In train handling, every locomotive has its own engine, whose running
condition is independent of the others while all wagons share the same braking pressure in
the air pipe along the train, whose fault leads to the same faults on all wagons.

In the above cases, the outputs of the actuators may not be equal to those expected, but
proportional to the expected ones, i.e.,

u
f

i = (1 − mi
f )ui, i = 1, . . . , n, (6)

in which ui and u
f

i is expected output and real output, respectively. The last one includes the
open-loop part uo

i and the closed-loop part Ui. The coefficient mi
f is a fault coefficient. In

Equation (6),

0 ≤ mi
f ≤ 1.

In the following analysis, one assumes that the locomotives’ faults are independent and the
wagons’ faults are the same, i.e.,

uli = (1 − m
li
f )uli , i = 1, . . . , k,

uj = (1 − mw
f )uj , j = 1, . . . , n, j �= li .

(7)

3. Fault detection and isolation

3.1. Sensor FDI

The sensors involved in train handling are the speed sensors. When the faults of these sensors
are considered and viewed as pseudo-actuators, the train model described in Equation (5) is
as follows:

δv̇ = f11(δv) + A12δx + BU,

δẋ = A21δv,

v̇
f

lsi
= −v

f

lsi
+ u

f

lsi
vlsi

,

yi = δvlsi
+ v

f

lsi
, i = 1, . . . , q,

(8)

where u
f

lsi
are pseudo-actuators of sensor faults.

In [6], it is assumed that there is a speed sensor for the first car (usually a locomotive). It
is convenient to assume that this sensor is always in good condition and the output of this
sensor is y1, which can be guaranteed by some hardware structures, for example, a hardware
redundancy. With this assumption, for every sensor fault mode (the output of this sensor is
yi, i = 2, . . . , q), the train is modelled as

δv̇ = f11(δv) + A12δx + BU,

δẋ = A21δv,

v̇
f

lsi
= −v

f

lsi
+ u

f

lsi
vlsi

,

y1 = δv1,

yi = δvlsi
+ v

f

lsi
, i = 2, . . . , q.

(9)
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710 X. Zhuan and X. Xia

When the ith fault u
f

lsi
is considered as a fault signal to be detected, the other faults (uf

lsj
, j ∈

[2, q], j �= i) are thought as disturbance to be decoupled.
For Equation (9), assuming the co-distribution �=�0 (�0 = span{d(δv1), . . . , d(δvn),

d(δx1), d(δxn−1)}) in the observability co-distribution algorithm in [21], one has,

Q0 = �0 ∩ span{dh} = span{d(δv1)},
Q1 = �0 ∩ Q̄0 = span{d(δv1), d(δx1)},
Q2 = �0 ∩ Q̄1 = span{d(δv1), d(δv2), d(δx1)},

...

Q2n−1 = span{d(δv1), . . . , d(δvn−1), d(δx1), . . . , d(δxn−1)},
Q2n = span{d(δv1), . . . , d(δvn), d(δx1), . . . , d(δxn−1)},

and o.c.a(�0) =�0. From this co-distribution, it is easy to justify that the following co-
distribution

� = span{d(δv1), . . . , d(δvn), d(δx1), d(δxn−1), d(v
f

lsj
)}, ∀j ∈ [2, q], (10)

satisfies o.c.a.(�) =�.
Furthermore, one has

Lgj
� ⊂ � = � + span{dh}, ∀j ∈ [0, m]. (11)

The conditions of an observability co-distribution in [21] are satisfied, i.e., � is an observability
co-distribution.

It is obvious that the vector field pj, j ∈ [2, p], j �= i is in the annihilator of � while span{l} ⊂
�. So it is possible to transform the train dynamics with sensor faults (9) into the form of
Equation (38) in [21], which means the possibility of fault detection of ith sensor fault.

A residual generator for the ith sensor can be in the following form:

ξ̇1 = f11(ξ1) + A12ξ2 + BU + L11(y1 − ξ11) + L13(yi − ξ1,lsi
),

ξ̇2 = A21ξ1 + L21(y1 − ξ11) + L23(yi − ξ1,lsi
),

ξ̇3 = −ξ3 + L31(y1 − ξ11) + L33(yi − ξ1,lsi
),

ri = (yi − ξ1,lsi
)/(vr + ξ1i ), i ∈ [2, p],

where ξ 1 = col(ξ 11, . . . , ξ 1n) ∈Rn, ξ 2 = col(ξ 21, . . . , ξ 2, n−1) ∈Rn−1, ξ 3 ∈R.
Especially, when L13 = 0, L23 = 0, it is also possible for the above form of dynamics to

be a residual generator, because the original system with only the measurement of the first
locomotive speed is also observable, which has been proved in [6]. It is very interesting to
observe that this residual generator is naturally a fault identifier because the fault signal does
not affect the states ξ 1, ξ 2, and the residual signal is actually the identifier signal of the fault.
Furthermore, in this way, the residual generators and identifiers of all the sensor faults can
share the same dynamics with different outputs, i.e.,

ξ̇1 = f11(ξ1) + A12ξ2 + BU + L11(y1 − ξ11),

ξ̇2 = A21ξ1 + L21(y1 − ξ11),
(12)

and the output (a residual generator as well as a identifier) for the ith sensor fault is

ri = y2 − ξ1i

ξ1i + vr

. (13)
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Vehicle System Dynamics 711

3.2. Actuator FDI

A locomotive group effort is sometimes not the same as the expected one for some reasons,
such as one locomotive of the locomotive group not working. The braking efforts of wagons
may be different from the expected, because of the pressure change in the braking pipe. In the
following, only the fault modes as in Equation (6) are studied.

When this happens, the efforts of the cars are proportional to the expected; that is, the fault
mode described in Equation (7) is repeated as follows:

δv̇ = f11(δv) + A12δx + BU + Bf (U + uo),

δẋ = A21δv,
(14)

where

Bf = diag

⎛
⎜⎜⎜⎝

m
l1
f

m1
,

n−2︷ ︸︸ ︷
mw

f

m2
, . . . ,

mw
f

mn−1
,
m

l2
f

mn

⎞
⎟⎟⎟⎠ .

To detect the actuators’ faults, some states are assumed to be measurable. In this study, the
train is assumed to be composed of n cars with one locomotive (group) at the front and one at
the rear. The wagons are between these two locomotives (locomotive groups). The speeds of
the two locomotives and the two wagons next to the locomotives are also available, i.e.,

y =

⎡
⎢⎢⎣

v1

v2

vn−1

vn

⎤
⎥⎥⎦ . (15)

The two kinds of fault modes (sensor fault and actuator fault) are studied separately, because
there are some difficulties in studying these two kinds of faults simultaneously, which will be
discussed later. So, in the study of actuator faults, the speed sensors are assumed to be in good
condition.

3.2.1. Locomotive FDI

The locomotive group fault diagnosis is not studied in this paper. Some approaches may be
used to supervise the running states of the locomotives, such as in [27–31]. In this study, the
fault signals are assumed to be given, and when a fault happens, one’s task is to redesign the
controller.

3.2.2. Wagon FDI

When the wagon faults in system (14) are concerned, based on the geometric approach in [21],
the wagon fault may be detected with a suitable residual generator. However the dimension
of the residual generator is 2n − 4. For a long train, n is very large. To avoid such a high-
dimension observer, one considers another approach to identify the wagons’ faults. The full
train model is repeated as follows:

miv̇i = (1 − mi
f )ui + fini−1 − fini

− fpi

− mi(c0i
+ c1i

vi + c2i
v2

i ), i = 1, . . . , n,

ẋj = vj − vj+1, j = 1, . . . , n − 1.

(16)
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712 X. Zhuan and X. Xia

When mi
f = 0, one has reached an equilibrium (steady state, v̇ = 0, ẋ = 0)

vi = vr , i = 1, . . . , n, and f 0
ini

(x0
i ), with ui = u0

i .

v̇r = u0
i + f 0

ini−1
− f 0

ini
− fpi

− mi(c0i
+ c1i

vr + c2i
v2

r ), i = 1, . . . , n,

ẋ0
j = vr − vr, j = 1, . . . , n − 1.

(17)

Thus one has a difference system (3), which is also denoted as follows:

Ẋ = f (X) + BU. (18)

A speed regulator designed in [6] for this difference system is as follows:

ż = f (z) + BU + G1(ym − Cmz),

U = c(w) + K(z − π(w)),
(19)

The closed-loop dynamics is

Ẋ = f (X) + BU,

ż = f (z) + BU + G1(ym − Cmz),

U = c(w) + K(z − π(w)).

(20)

When the train is faultless, its speed will track the reference speed under the controller (19).
When mi

f �= 0, how is the train’s dynamics? One first checks whether the train dynamics is
stable. If it is, then one will study the new steady states.

The locomotives’ faults are assumed to be detected and isolated through other approaches;
so only the wagon faults with mi

f = mw
f , i = 2, . . . , n − 1 are considered in the identification.

When mw
f �= 0, the closed-loop dynamics (20) in cruise phase is as follows:

Ẋ = f (X) + BU + Bf (U + uo),

ż = f (z) + BU + G1(ym − Cmz),

U = Kz,

(21)

where

Bf = diag

⎛
⎜⎜⎜⎝0,

n−2︷ ︸︸ ︷
mw

f

m2
, . . . ,

mw
f

mn−1
,

n︷ ︸︸ ︷
0, . . . , 0

⎞
⎟⎟⎟⎠ .

Assuming A= ∂f (0)/∂X, (from the above, one knows A+BK < 0, A+G1Cm < 0) one has a
linearised model as follows:

Ẋ = AX + (B + Bf )Kz + Bf uo,

ż = −GCmX + (A + G1Cm + BK)z.
(22)

If the K, G are chosen such that[
A (B + Bf )K

−GC A + GC + BK

]
< 0,

then the above system (22) is stable.
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The steady state of the train can be denoted as (v̇ = 0, ẋ = 0)vi = v
f
r , i = 1, . . . , n, and

f
f

ini
(x

f

i ), with ui,

v̇f
r = u1 − f

f

in1
− m1(c01 + c11v

f
r + c21(v

f
r )2) − fp1 ,

v̇f
r = ui + f

f

ini−1
− f

f

ini
− mi(c0i

+ c1i
vf

r + c2i
(vf

r )2) − fpi
− mi

f ui, i = 2, . . . , n − 1,

v̇f
r = un + f

f

inn
− mn(c0n

+ c1n
vf

r + c2n
(vf

r )2) − fpn
. (23)

If v
f
r is known, then there are only n unknown variables f

f

ini
, i = 1, . . . , n − 1, mw

f in the
above n equations. Especially when summing up the equations, one has

n∑
i=1

ui −
n∑

i=1

mi(c0i
+ c1i

vf
r + c2i

(vf
r )2) =

n−1∑
j=2

mi
f ui. (24)

It is possible to solve them, which means the identifiability of the wagon fault.
Although it is impossible for a train to reach steady states in practical running, it is practical

to assume that the train can approximate its steady state, at least within a cruise phase. The
practical steady-state speed of the running train is defined with the analysis of differences of
the measurable speeds (v1, v2, vn−1, vn) in this paper.

When all the wagons are faultless and the train is running in its steady state, one has,

0 =
n∑

i=1

uo
i −

n∑
i=1

mi(c0i
+ c1i

vr + c2i
(vr )

2). (25)

With Equations (24) and (25), if all the wagons’ faults are the same, i.e., mi
f = mw

f , i =
2, . . . , n − 1, one has

(1 − mw
f )

n∑
i=1

ui −
n∑

i=1

uo
i =

n∑
i=1

mi(c1i
vf

r + c2i
(vf

r )2 − (c1i
vr + c2i

v2
r )),

from which one can get mw
f .

4. Fault-tolerant control

4.1. FDI and FTC in the case of sensor faults

The residual generator in the case of sensor faults is as in Equations (12) and (13), where
function f11 is linearised and thus the observer is a linear system. The matrices L11, L21 are
determined through the function LQR in MATLAB. If the sensor fault model is linearised as

ż = Az + BU,

ym = Cmz, (26)

yi = (1 + mf
vi
)vi − vr, i = 2, . . . , p,

then one assumes Cm1 =Cm(1, :), Q = I (2n−1), R = 1, and with L = lqr(A′, Cm1
′, Q, R), L =L′,

one gets the residual generator.
In FTC, one assumes the outputs of the residual generator are v̄i and the measured speeds

vmi. The reference speed is vr . In the control process, for the output vmi of the ith speed
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sensor, one will take Ksensor
i × vmi as the real speed of the corresponding car, where Ksensor

i is
a coefficient, which will be modified when the sensor fault is detected and isolated. A constant
V th is set as the threshold of fault diagnosis. For the FDI, one has other arrays in the program,
KDsensor

i,1:11 ,N sensor
i . The former is used to store the past 11 coefficients of the sensor and the

latter the times of violations of the fault-free condition.
The FDI program is shown in Figure 2, where KDsensor

i,1:11 = 01×11,N
sensor
i = 0 and Ksensor

i = 1
are initialised. This program is executed once a second.

It is known that there is a possibility of false rejections and a possibility of false acceptances
for a fault-tolerant controller, which should be considered. The first possibility is that it does not
detect or isolate the fault well when a fault occurs. The second is that it takes a faultless system
as a fault system. The choice of the thresholds affect these two possibilities. Generally, when
one possibility is reduced with a set of thresholds, the other one is increased. When the
threshold is to be determined, the balance between the two possibilities should be considered.

Figure 2. Sensor fault detection and isolation program.
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From Figure 2, it is impossible to avoid the above two possibilities. However, the effects of
the possibility of false acceptance can be discussed qualitatively. If a fault is falsely accepted,
for example, a sensor with a gain 1 is falsely identified with a gain 1.05, then with the FTC,
the speed of the train will be underestimated, and thus the train will be overspeed. In that case,
the FDI will further identify a gain fault lower than 1 to correct the false acceptance. It is in
the way of ‘negative feedback’ to track the real value of the gain. Such an approach in Figure 2
does not obviously affect the train performance. That can be seen from the simulation results
of an FTC in a faultless system.

In this paper, the two possibilities from theoretic viewpoints will not be discussed, nor will
the time delay between the fault occurrence and fault isolation. Instead, they will be discussed
on the basis of the simulation results.

4.2. FTC in the case of a locomotive fault

As described before, FDI of locomotive faults are not studied in this study. Here, only the FTC
of a locomotive fault is considered.

Figure 3. Wagon fault detection and isolation program.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
P
r
e
t
o
r
i
a
]
 
A
t
:
 
1
6
:
4
7
 
1
7
 
M
a
y
 
2
0
1
0



716 X. Zhuan and X. Xia

In the following simulation, one assumes that the fault is detected and identified 60 s after
it occurs. When it is identified, the controller will be redesigned. According to the fault,
the parameters of the train are modified and then the controller is redesigned with the new
parameters. For example, assuming the coefficient of its input in the train model is Bt(i, :), if
the locomotive group u(i) loses half of its effort, the new coefficient is Bt(i, :)/2.

4.3. FDI and FTC in the case of a wagon fault

When a wagon fault is detected and identified, similar to the case of a locomotive fault, the
controller will be redesigned according to the updated parameters of the train. The key is FDI.
In simulation, this is done following the approach proposed in Section 3.2.2.

In this approach, one employs the algorithm as shown in Figure 3 to detect and identify
the fault; this is executed once a second. In the figure, the matrix Bb is the coefficient matrix
of the brake inputs in the train model, and is equal to diag(1/mi) when the braking system is
faultless. The variables vm, vr are the measured speed and reference speed, respectively. The
variable K

f

brake is a ten-dimension array used to store the past ten estimated fault signals while
N

f

brake is a counter number of the continuous violation of fault condition. There are the same
possibilities in the FDI of a wagon fault as in the FDI of a sensor fault. Similar to the latter, the
FDI of wagon faults is also ‘negative feedback’ to track the real value of the wagon actuator.
The effect of false acceptance on the train performance will not be discussed in a theoretic
way, but is discussed with the simulation results. The time delay between the fault occurrence
and fault isolation will not be discussed either.

5. Simulation

The simulation setting of the train is the same as in [6] as well as the speed profile and track
profile shown in Figure 4. When all sensors and actuators are faultless, the controller is the
speed regulator with Ke = 1, Kf = 1, Kv = 1, designed in [6]. The speed regulator is designed
in [6] as follows. Step 1: with the reference speed, the optimal equilibrium is calculated with
the approach in [34]; Step 2: with the optimal equilibria, the train model is rewritten, and
according to this rewritten model, the speed regulator is designed. Here, the reference speed
and the coefficients of the sensors and actuators have effects on the equilibria and the rewritten
model parameters. Only when the reference speed changes or the fault mode is identified, steps
1 and 2 will be re-processed (redesign the speed regulator).

When a fault occurs, the controller will be redesigned. The controller redesign includes two
parts: optimal scheduling and speed regulator.
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Figure 4. The track profile.
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5.1. Simulation of sensor faults

In simulation, the sensor FDI program is only working during the cruise phase. The fault
diagnosis parameter setting is as in Figure 2.

There are two kinds of errors with the gains of speed sensors. One is a random error, which
depends on the accuracy of speed sensor. The other one is a systematic error with gain, which
is a real fault and should be corrected. From the simulation, it will be seen that the former has
little impact on the performance of controllers, while the latter has much greater impact.

In the following description, the accuracy 1 ±α% of a speed sensor means the output of the
sensor is randomly 1 ±α% of the measured speed, while the gain fault β% of a sensor means
the output of the sensor is 1 +β% of the measured speed with the accuracy 1.

The effects of the random errors of the speed sensors on the non-FTC (a controller without
fault-tolerant capacity) and the FTC (a controller with fault-tolerant capacity) are discussed
firstly. The following three groups of figures are the simulation results with non-FTC of a
faultless system, FTC of a faultless system, and FTC of a faulty system, respectively.

Figures 5 and 6 are the simulation results of a faultless system with non-FTC. All sensors in
the former case have accuracies of 100%, while those in the latter have accuracies of 1 ± 5%
from the beginning.

Figures 7 and 8 are simulation results of a faultless system with an FTC. All sensors in the
former case have accuracies of 100%, while those in the latter have accuracies of 1 ± 5% from
the beginning.

Figures 9 and 10 are the simulation results of a faulty system (the second sensor is faulty
with a gain fault + 5%). All sensors in the former case have accuracies of 100% while those
in the latter have accuracies of 1 ± 5%.

In these figures, the first subplots show the front locomotive group speed, the rear locomotive
group speed and the mean speed of all the cars with respect to the distance from the starting
point. The second subplots show maximum and minimum in-train forces and the mean value
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Figure 5. Non-FTC (sensor accuracy of 100%).
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Figure 6. Non-FTC (sensor accuracy of 1 ± 5%).
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Figure 7. FTC (sensor accuracy of 100%).

of the absolute values of all the in-train forces at a specific time with respect to the distance.
The third ones show front and rear locomotive groups’ notches along the track.

Comparing Figure 5 with Figure 6, one can see that the random error has very little effect
on the speed regulators without fault-tolerant capacity when there is no fault with the sensors.
Comparing Figure 7 with Figure 8, it can be seen that the random error makes the performance
a little worse with the fault-tolerant controller even though no fault occurs. The effects are,
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Figure 8. FTC (sensor accuracy of 1 ± 5%).
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Figure 9. FTC (sensor accuracy of 1 + 0% and second sensor gain fault of + 5%).

however, very small. The performance index is referred to in Table 1. From a comparison
of Figure 9 with Figure 10, one sees that the random errors of sensors have little impact on
the performance of the fault-tolerant controllers when a fault occurs with the second sensor.
From a comparison of the last two pairs, it is concluded that random errors have effects on
the performance of the fault-tolerant controllers, but the effects are limited. The result is
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Figure 10. FTC (sensor accuracy of 1 ± 5% and second sensor gain fault of + 5%).

Table 1. Comparison if non-FTC and FTC of sensor faults.

|δv̄|(m/s) |fin|(kN)

Max Mean Std Max Mean Std E (MJ) Control type

Figure 5a 2.98 0.32 0.53 331.16 58.60 63.05 12,400 non-FTC
Figure 6b 2.91 0.32 0.51 323.39 56.46 63.85 12,200 non-FTC
Figure 11c 3.53 0.78 0.52 343.89 57.73 63.69 13,100 non-FTC

Figure 10c 3.08 0.33 0.47 316.34 59.38 65.03 12,600 FTC
Figure 9d 2.98 0.37 0.52 343.37 59.75 63.45 12,900 FTC
Figure 7a 2.98 0.33 0.53 331.15 59.51 63.55 12,800 FTC
Figure 8b 3.16 0.47 0.52 338.37 55.76 65.51 13,200 FTC

Figure 12e 2.98 0.39 0.51 338.72 58.71 64.14 13,000 FTC
Figure 13f 2.98 0.51 0.58 328.50 60.50 63.40 12,600 FTC
Figure 14g 2.98 0.41 0.51 343.12 58.96 64.13 13,100 FTC

Figure 15h 2.98 0.62 0.58 336.38 63.65 62.92 13,400 FTC
Figure 16h 3.34 0.60 0.66 345.48 65.65 62.06 13,500 FTC

aFaultless, and sensor accuracy 100%.
bFaultless, and sensor accuracy 1 ± 5%.
cSensor accuracy 1 ± 5% and second sensor gain fault + 5%.
dSensor accuracy 100% and second sensor gain fault + 5%.
eSensor accuracy 100% and third sensor gain fault + 7%.
fSensor accuracy 100% and fourth sensor gain fault − 20%.
gSensor accuracy 100% and fourth sensor gain fault + 20%.
hSensor accuracy 100% and the second sensor gain fault + 30% from the distance of 2000 m and fourth sensor gain fault − 30%
from the distance of 4000 m.

still acceptable. In the following simulation of this study, one therefore seldom considers the
random errors of the sensors. From the above discussion, it is clear the results are not affected.

A discussion of the effects of the FTC on the performance of a speed regulator is as
below.
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Figure 11. Non-FTC (sensor accuracy of 1 ± 5% and 2nd sensor gain fault of + 5%).

The figures from Figure 5 to Figure 11 are compared. Figure 11 is the simulation result of
a faulty system (the second sensor is faulty with a gain fault + 5%) with all sensors having
accuracies of 1 ± 5%. The controller in this simulation is a non-FTC.

One first compares Figure 5 with Figure 7, in which the sensors have accuracies of 100% and
the system is faultless. The former is controlled with a non-FTC while the latter is controlled
with an FTC. From these two figures, one can see that the performance is visually very similar
although from Table 1 the last one appears to be slightly worse.

Then Figure 6 is compared with Figure 8, in which the sensors have accuracies of 1 ± 5% and
the system is faultless. The former is controlled with a non-FTC while the latter is controlled
with an FTC. The speed performance of the latter is a little worse than that of the former,
and even the latter has a steady speed error. This is because the random errors of the sensors
have an effect on the performance of an FTC. Even so, the FTC does not explicitly worsen
the performance of the speed regulator. The result is still acceptable.

The advantage of an FTC can be seen when a fault occurs. Figures 11 and 10 represent
simulation of a faulty system (all sensors with accuracies of 1 ± 5% and the second one has a
gain fault of + 5%) with a non-FTC and with an FTC, respectively. It is seen that the speed
performance of the latter is obviously better than that of the former. That is the contribution
of the FTC. From the above comparison, one can conclude that:

(1) When no fault occurs and all sensors have accuracies of 100%, the speed performance of
an FTC is very similar to that of a non-FTC.

(2) When no fault occurs and all sensors have accuracies of 1 ± 5%, the speed performance
of an FTC is a little worse than that of a non-FTC. However, the result is still thought as
a good result.

(3) When a small fault (the second sensor has a gain fault of + 5%) occurs and all sensors
have accuracies of 1 ± 5%, the speed performance of an FTC is much better than that of
a non-FTC.

From the above, it is concluded that the FTC for the sensors’ faults is suitable.
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Figure 12. FTC (third sensor with a gain fault of + 7%).

In the above simulations, only the FTC for the second sensor fault is given. In the following,
one can see the FTC applied in the faults of the third and fourth sensors, and in the concurrent
faults of the second and fourth ones. Since the accuracy of a sensor does not explicitly affect
the performance of the controller, without a special description, the sensor accuracy is assumed
to be 100% in the rest of this paper.

Figure 12 shows an FTC with the third sensor having a gain fault of + 7% from the
beginning. Figure 13 shows an FTC with the fourth sensor having a gain fault of − 20%
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Figure 13. FTC (fourth sensor with a gain fault of − 20%).
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Figure 14. FTC (fourth sensor with a gain fault of + 20%).

from the beginning. Figure 14 shows an FTC with the fourth sensor having a gain fault of
+ 20% from the beginning.

A kind of concurrent fault (the second sensor has a gain fault of + 43% and the fourth one
has a gain fault of + 12% from the beginning) is shown in Figure 15 with an FTC. Another
kind of concurrent fault (the second sensor has a gain fault of + 30% from the distance of
2000 m and the fourth one has a gain fault of − 30% from the distance of 4000 m) is shown
in Figure 16 with an FTC.
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Figure 15. FTC (concurrent faults).
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Figure 16. FTC (concurrent faults).

The comparison of these figures in performance is shown in Table 1. |δv̄| is the absolute
value of the difference between the reference velocity and the mean value of all the cars’
velocities at a specific point. |fin| is the mean value of the absolute values of all the couplers’
in-train forces at a specific point. The items max, mean, and std are the maximum value, mean
value, and standard deviation of the statistical variable. The variable E is the total energy
consumption for the track section.

From an analysis of the figures and a comparison with Table 1, one can conclude that the
application of FTC of sensor faults in the speed regulation explicitly improves performance
in the case of fault occurrence and does not explicitly worsen performance in the case of a
faultless train.

5.2. Simulation of locomotive faults

In the previous parts, FDI of locomotive faults are assumed to be done by other approaches
and only FTC is considered in this paper. The fault signal is assumed to be given when a fault
occurs.

In the train setting of simulation, there are two groups of locomotives at the front and at
the rear, respectively. Every group is composed of two locomotives. In simulation of an FTC,
one assumes that the fault is one locomotive in a locomotive group that does not work. When
the two locomotives in a group do not work, distributed power control cannot apply, which is
not discussed in this study. So, in the simulation, it is assumed that the fault is detected 60 s
after it happens and the controller is then redesigned. There are three types of faults:

(1) Front-loco-fault: one locomotive of the front locomotive group does not work.
(2) Rear-loco-fault: one locomotive of the rear locomotive group does not work.
(3) Both-loco-fault: one locomotive of the front locomotive group and one of the rear group

do not work.
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Figure 17. Front-loco-fault with an FTC.
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Figure 18. Front-loco-fault with a non-FTC.

Figures 17 and 18 are simulation results of Front-loco-fault with an FTC and a non-FTC,
respectively. One of the locomotives at the front does not work from the distance 1500 m.

Figures 19 and 20 are simulation results of rear-loco-fault with an FTC and a non-FTC,
respectively. One of the locomotives at the rear does not work from the distance 1500 m.
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Figure 19. Rear-loco-fault with an FTC.
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Figure 20. Rear-loco-fault with a non-FTC.

Figures 21 and 22 are simulation results of Both-loco-fault with an FTC and a non-FTC,
respectively. One locomotive at the front and one at the rear do not work from the distance
1500 m.

From comparing Figures 17 and 18, it can be seen that the performance of an FTC is better
than that of a non-FTC during the period when the train is passing over a hill. (In these figures,
the track profile is the same as that of previous simulation and is not shown.) That can also be
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Figure 21. Both-loco-fault with an FTC.
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Figure 22. Both-loco-fault with a non-FTC.

seen from the front locomotive effort. When the effort of the front locomotive group is zero,
then there is no difference between the FTC and non-FTC. When the front locomotive group
uses traction power, the speed performance of the FTC is better.

The above conclusion is also clear from a comparison of Figure 19 with Figure 20, and
Figure 21 with Figure 22. The performance comparison of these figures is shown in Table 2.
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Table 2. Comparison of non-FTC and FTC of locomotive faults.

|δv̄|(m/s) |fin|(kN)

Max Mean Std Max Mean Std E (MJ) Control types

Figure 17a 3.03 0.41 0.56 338.40 56.57 65.32 11,600 FTC
Figure 18a 2.99 0.41 0.55 361.80 60.19 65.19 10,800 non-FTC
Figure 19b 2.98 0.35 0.54 339.61 64.53 63.98 12,200 FTC
Figure 20b 2.98 0.45 0.65 372.29 64.31 65.98 9,680 non-FTC
Figure 21c 3.02 0.42 0.57 370.39 60.00 64.87 11,400 FTC
Figure 22c 3.17 0.54 0.73 355.97 58.80 66.31 7,800 non-FTC

aOne of the two locomotives at the front does not work from the distance of 1500 m.
bOne of the two locomotives at the rear does not work from the distance of 1500 m.
cOne locomotive at the front and one at the rear do not work from the distance of 1500 m.

The advantage of an FTC in the locomotive fault does not seem obvious during most of the
simulation period. This is because the locomotive groups make no effort (not powered) during
most of the travel period. When the locomotive groups make efforts, the advantage is obvious.

5.3. Simulation of wagon faults

In previous sections, an approach to calculate the steady-state speed difference as an FDI of
the wagons’brake fault was proposed. In simulation, all faults occur from the distance 1500 m.
The simulation results are shown below.

Figure 23 depicts the simulation of an FTC of the wagon braking system with a faultless
system. The corresponding simulation of a non-FTC is shown in Figure 24. In comparing
these two figures, one can see that the FTC does not explicitly worsen the performance of the
speed regulator.
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Figure 23. Faultless train with an FTC of braking system.
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Figure 24. Faultless train with a non-FTC of braking system.
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Figure 25. Small fault in an FTC of braking system.

Figures 25 and 26 represent the simulation results of an FTC and a non-FTC when the
braking system makes only 97% of the expected braking efforts. This fault is very small.
From a comparison of the FTC and the non-FTC, the difference between them is very small.
Also from comparing Figure 25 with Figure 23, one knows such a small fault does not affect
the performance of the speed regulator.

When a more serious fault occurs (the braking system makes 70% of the expected braking
efforts), the difference between the FTC and the non-FTC is obvious, which can be seen from
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Figure 26. Small fault in a non-FTC.
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Figure 27. Big fault in an FTC of braking system.

a comparison of Figure 27 with Figure 28. The former is with an FTC and the latter with a
non-FTC.

When only part of the braking efforts are faulty (the braking efforts of 2nd to 31st wagon
groups are 70% of the expected from the distance 1500 m) the performance of an FTC is
also better than that of a non-FTC, although the FTC is designed for the whole braking
system, which can be seen from a comparison of Figure 29 with Figure 30. The performance
comparison is shown in Table 3.
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Figure 28. Big fault in a non-FTC.
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Figure 29. Partial fault in an FTC of braking system.

From the above comparison, one can draw the following conclusions:

(1) A small fault in the braking system has very little effect on the performance of the speed
regulator.

(2) The application of an FTC together with a speed regulator does not explicitly worsen the
performance of the speed regulator when the system is faultless.
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Figure 30. Partial fault in a non-FTC.

Table 3. Comparison of non-FTC and FTC of wagon faults.

|δv̄|(m/s) |fin|(kN)

Max Mean Std Max Mean Std E (MJ) Control type

Figure 23a 2.92 0.35 0.49 323.89 56.64 63.99 12,300 FTC
Figure 24a 2.99 0.41 0.55 361.80 60.19 65.19 10,800 Non-FTC

Figure 25b 2.87 0.35 0.48 321.31 55.86 63.70 12,300 FTC
Figure 26b 2.89 0.33 0.50 321.64 56.79 63.51 12,299 Non-FTC

Figure 29c 2.76 0.37 0.47 315.71 78.30 66.15 12,256 FTC
Figure 30c 3.64 0.53 0.56 322.02 75.93 63.79 11,957 Non-FTC

aFaultless.
bThe braking effort is 97% of the expected.
cThe braking efforts of 2nd to 31st wagon group are 70% of the expected from the distance of 1500 m.

(3) When a small fault occurs, there is little difference between the application of an FTC and
a non-FTC.

(4) The application of an FTC can improve the performance when a big fault of the braking
system occurs.

(5) Even if a fault occurs in part of the braking system, which is different from the assumed
fault mode as in Equation (7) (fault with the whole braking system), the application of an
FTC can improve the performance of the speed regulator.

6. Conclusion

In this paper, the FTC of heavy-haul trains is discussed. The discussion is based on the redesign
of the speed regulator with measurement feedback proposed in [6].
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The FDIs for the gain faults of the sensors and the braking system are respectively studied,
while the FDI of the locomotive fault is not studied, but the latter can be done following
some other approaches, such as one proposed in [27]. The FDI of sensor faults is based on a
geometric approach proposed in [21]. The FDI of a braking system is based on the observation
of the steady-state speed. From the difference of the steady speeds between the fault system
and the faultless system, one can get the fault information.

These two kinds of FDIs are studied separately, and need to be studied further together. In
the opinion of the authors, it is possible to apply them together, because the FDI of a sensor
fault is based on the difference between the measured speed of a sensor and the estimated
speed of the observer, while the FDI of a braking fault is based on the difference between
the measured speeds (steady-state speeds) and the reference speed. In the former, a necessary
condition for the diagnosis of a fault is that there are differences among the measured speeds
while in the latter, a necessary condition for a diagnosis of a fault is that there are nearly no
differences among the measured speeds (because a steady state is assumed). This is, however,
just a theoretical discussion. In fact, because of the accuracy of the sensor and the ideal
assumption of a steady state, the visibility of the difference of the measured speeds depends
on a threshold. The choice of the threshold affects the performance of the two FDIs, which is
not discussed in this paper.

Simulation tests were conducted on the suitability of the two FDIs and the redesign of speed
regulators according to the fault signals from the FDIs of sensor faults and braking system
faults, and the FDI (not included in this study) of locomotive faults.

Simulation shows that the random errors of the speed sensors have very little impact on
the train’s performance. It is also shown that the proposed FTC does not explicitly worsen
the performance of the speed regulator in the case of a faultless system, while it obviously
improves the performance of the speed regulator in the case of a faulty system.

Notation

m mass of a car, which may be a wagon or a locomotive
vi the ith car’s speed
xi the relative distance of the neighbouring cars
fai the force undertaken by the ith car from the environment
faeroi the ith car’s aerodynamic force
fpi the force undertaken by the ith car due to the car’s position
fini the in-train force between the ith and (i + 1)th cars
c0i, c1i, c2i the aero-dynamical coefficients
vr the reference speed, i.e., speed tracking command
δx the difference of the variable x from the equilibria x0

ẋ the differential of x with respect to t
vi the sensor output for the ith car’s speed
vo

i the real speed of the ith car
lsi the number of the car which is equipped with the speed sensor numbered as i
m

f
vi

the constant gain fault of the sensor for ith car
vlsi the output of the ith speed sensor
m

f
vlsi

the constant gain fault of the ith speed sensor
ui is the expected output of ith actuator
u

f

i is the real output of the ith actuator
m

li
f the fault coefficient for the ith locomotive effort

mw
f the fault coefficient for the ith wagon braking effort
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